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Although neuroimaging studies using standard subtraction-based analysis from functional magnetic resonance 24
imaging (fMRI) have suggested that frontal and temporal regions are involved in word learning from fluent 25
speech, the possible contribution of different brain networks during this type of learning is still largely unknown. 26
Indeed, univariate fMRI analyses cannot identify the full extent of distributed networks that are engaged by a 27
complex task such as word learning. Here we used Independent Component Analysis (ICA) to characterize the 28
different brain networks subserving word learning from an artificial language speech stream. Results were 29
replicated in a second cohort of participants with a different linguistic background. Four spatially independent 30
networks were associated with the task in both cohorts: (i) a dorsal Auditory-Premotor network; (ii) a dorsal 31
Sensory-Motor network; (iii) a dorsal Fronto-Parietal network; and (iv) a ventral Fronto-Temporal network. 33
The level of engagement across time showed that the engagement of these networks varied through the learning 33
period with only the dorsal Auditory-Premotor network being engaged across all blocks. In addition, the 34
connectivity strength of this network in the second block of the learning phase correlated with the individual 35
variability in word learning performance. These findings suggest that: (i) word learning relies on segregated 36
connectivity patterns involving dorsal and ventral networks; and (ii) specifically, the dorsal auditory-premotor 37

network connectivity strength is directly correlated with word learning performance.

© 2015 Published by Elsevier Inc.

Despite the apparent ease with which humans speak and communi-
cate, learning a new language is a complex task that everyone needs to
face at least once in her or his lifetime. A central aspect of this process is
the acquisition of new words. In natural circumstances, learners need to
first discover word units from fluent speech. This process may rely
on statistic-based mechanisms which track regularities between
phonemes and syllables, as well as on the detection of the subtle
prosodic cues that can help word segmentation (e. g. pauses, intonation,
etc.; Aslin et al., 1998; Pefia et al., 2002). Then, memory traces of those
isolated word forms need to be progressively enhanced through subse-
quent encounters (Saffran, 2001) in order to be memorized and stored
in long-term memory (for a review: Rodriguez-Fornells et al., 2009).

* Corresponding author at: University of Barcelona, Faculty of Psychology, Department
of Basic Psychology, Pg. Valld'Hebron 171, 08035 Barcelona, Spain.
! Diana Lépez-Barroso and Pablo Ripollés contributed equally to the present study.
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1053-8119/© 2015 Published by Elsevier Inc.

Therefore, as shown for other complex cognitive functions, new
word learning may rely on widespread segregated and overlapping
large-scale networks (Mesulam, 1990), even before meaning is attached
to them. Interestingly, we have recently shown that the ability to learn
novel word forms is related to functional and structural connectivity
between the auditory cortical area (comprising the superior temporal
gyrus, STG) and the motor regions (comprising the premotor cortex,
PMC; and the inferior frontal gyrus, IFG) through the direct connection
of the arcuate fasciculus in the left hemisphere (Lopez-Barroso et al.,
2013). These regions belong to the dorsal stream of language process-
ing, which is in charge of mapping sound into articulation (Hickok and
Poeppel, 2000; Hickok et al., 2011; Rauschecker and Scott, 2009; Saur
et al., 2008), a process that might be involved in the acquisition of
new vocabulary (Hickok and Poeppel, 2007; Rodriguez-Fornells et al.,
2009). At the same time, the areas of the dorsal stream along with the
inferior parietal lobe (Buchsbaum and D'Esposito, 2008; Corbetta
and Shulman, 2002) are related to the rehearsal and attentional
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Fig. 1. Schematic illustration of the artificial language stream used in the learning phase of the experiments. The stream was aurally presented and it was composed of nonsense trisyllabic
words that were repeated across the stream. The “_" represent the 25 millisecond pause inserted between the words in order to mark word boundaries.

mechanisms necessary to maintain phonological information in work-
ing memory (Jacquemot and Scott, 2006); a function that is likely to
be required to keep the phonological form of the segmented word in
an active state in order to be memorized.

Thus far, previous reports of functional neuroimaging of the very
first stages of word learning are limited (Cunillera et al., 2009; Karuza
etal,, 2013; McNealy et al., 2006, 2011). Despite of some methodological
differences, all of these studies required participants to listen to a
continuous flow of speech composed of nonsense trisyllabic words
with no meaning attached. McNealy et al. (2006) identified increased
activity in the left inferior and middle frontal gyrus when comparing
words (presented during the learning phase) with partwords as the
neural signature of on-line word learning. In addition, during learning,
temporal and parietal regions showed increased activity when listening
to a stream containing words compared to a stream containing syllables
in random order. Cunillera et al. (2009) also reported the involvement
of the PMC during the initial stages of the learning process. Finally, a
recent study reported a correlation between IFG activation and segmen-
tation abilities (Karuza et al., 2013). Although the univariate analysis
approach taken by these studies allows only spotting the involvement
of a variety of independent regions, the regions highlighted suggest an
involvement of the dorsal stream in word learning. However, to date
there is no information about how these segregated regions functionally
interact during word learning.

Here we used independent component analysis (ICA) to identify the
whole set of functional networks engaged during a word-learning task,
when no meaning is attached to the new words. ICA is a data-driven
approach (Calhoun et al., 2008) that allows the measurement of both
the BOLD response fluctuations in the active and the spontaneous
fluctuations in the resting brain (Smith et al., 2009). It captures the
integrated activity of spatially distributed brain regions (i.e. functional
integration; Friston, 2011; Smith, 2012) without any a priori constraint.
ICA is especially well-suited to discern how multiple functional
networks — subserving different cognitive processes — synergistically
interact (Calhoun et al., 2001; Celone et al., 2006; Wu et al., 2009). ICA
presents some advantages over univariate analysis, as for example, it
does not need a temporal model of brain functioning. Univariate analy-
sis provides optimal results when the activated areas follow an almost
canonical BOLD response, but in contrast, is blind to other types of
changes (for example transient task-related, non-task related, slow
varying changes, etc., Calhoun et al., 2009; McKeown et al., 1998).
Moreover, recent studies have shown that different neural circuits can
occur concurrently within the same brain areas, but cannot be resolved
by standard GLM analysis (Beldzik et al.,, 2013; Xu et al,, 2013a,b).

In this study, participants completed an artificial word-learning task

which tapped the initial stages of word learning, when auditory word
forms need to be learned from fluent speech and no meaning is yet
associated to them (De Diego-Balaguer et al., 2007; Pefia et al., 2002).
First, we aimed to define the brain networks that were engaged and
disengaged during the word-learning task. As the ICA analysis is fully
data-driven, similar experiments were performed in two different
cohorts of participants with different linguistic backgrounds (Spanish
[n = 25] and German [n = 16]), searching for replication (Bennet
et al., 2009; Button et al., 2013; Lieberman and Cunningham, 2009).
Second, we aimed to study which of the engaged networks was associ-
ated with the individual variability in the word learning performance.

Material and methods
Participants

Forty-three participants were recruited for the study. Twenty-seven
native Spanish speakers (mean age: 24.7, SD: 4.6, 12 women) were
involved in the main cohort, while the replication cohort involved
sixteen German speakers (mean age, 26.6; SD: 4.6, 8 women). Written
consent was obtained from all subjects and they were paid for their par-
ticipation. They all were free of neurological and otological diseases. Ex-
periments were approved by their respective local ethical committees.

Artificial word-learning task

Main cohort

The experiment involved a learning and a test phase. During the
learning phase, subjects conducted an artificial word-learning task
administered in two runs. Eight different artificial languages were
used, including six that had been employed in a previous study (De
Diego-Balaguer et al,, 2007) and two new languages that were validated
in a behavioral pilot study. Stimuli were presented through MR-
compatible headphones. Each participant heard two of the eight
languages created, one in each run. The order of the languages was
counterbalanced among subjects. Streams and test items were built
using MBROLA speech synthesizer software (Dutoit et al., 1996).
The languages were built by concatenating nine different trisyllabic
nonsense words (De Diego-Balaguer et al., 2007; Pefia et al., 2002;
Saffran et al,, 1996) that followed Spanish phonotactic constraints.
Words had a duration of 696 ms each, and subtle pauses of 25 ms
were inserted between them in order to introduce a prosodic cue to
enhance the segmentation process. During the task, 4 active blocks,
each including 42-word presentations (30 s), were alternated with
resting blocks of 20 s duration. Words were presented in the form of a

Fig. 2. Task-related networks and associated hemodynamic time courses for the main cohort (left panel) and the replication cohort (right panel). Three of the networks are identified as
dorsal networks: dorsal Auditory-Premotor (A); dorsal Sensory-Motor (B); and dorsal Fronto-Parietal (C). The fourth network is identified as a ventral Fronto-Temporal (D). Each component
is rendered onto the MNI template at representative slices, with MNI coordinates in millimeters shown in the top left corners. Components are shown with a cluster extent of 30 voxels
with a 1% false discovery rate with the threshold bar shown at the right side of each panel. On the lower part of each panel, the associated time course for each component is shown. The
mean time course over the 27 subjects (main cohort) and the 16 subjects (replication cohort) is shown in a central, colored line with standard error of the mean depicted with white lines.

Only left hemisphere is shown in the sagittal views.
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fluent speech stream and concatenated pseudo-randomly such that the
same word was never immediately repeated in the stream. Participants
were told to pay attention to the nonsense language stream, as later on
they would be asked about the “words” presented within the streams.

After the language exposure in each run, word learning was assessed
behaviorally by testing words that had been presented during the
learning phase and words that had not been presented (“non-words”).
Non-words were built with the same syllables as the words presented
in the learning phase, but in an incorrect order. Responses were
recorded using an MR-compatible response box containing two
response buttons (forefinger and middle-finger of the left hand). Partic-
ipants heard a word or non-word presented in isolation and they were
required to press with the middle finger button if they thought the
stimulus was a word of the learned language and with the index finger
if they thought that it was a non-word. The experiment was presented
using the Presentation Software. In order to assess participants' ability
to correctly discriminate words from non-words, their behavioral
responses were transformed into d-prime scores (MacMillan and
Creelman, 2005). The subjects' overall performance indicated that
words of the languages were indeed learned (behavioral data for two
subjects was not available due to technical problems in the recording):
participants reliably distinguished between words and non-words (t
(24) = 2.74,p < 0.01).

Second cohort

For the second cohort, given that participants were native German
speakers, the materials were modified to use German phonemes.
This was done by applying the German diphone database from the
MBROLA text-to-speech synthesizer. Speech streams preserved German
phonotactics. The same procedure as for the main cohort was used for
the learning and test phases except that, in order to have a greater
signal-to-noise relation, 3 runs with 6 language-rest blocks per run
were used. The duration of each active and resting block was the same
as for the main cohort. Although responses could not be recorded in
this scanner, to maintain the same procedure as in the main cohort,
participants were required to respond during the test phase in the
same manner as the participants from the first cohort. The materials
used were tested in another group of participants (N = 13) and
confirmed that learning was also possible with the modified version of
the material (£(12) = 4.27, p < 0.001).

Image acquisition

Main cohort

Images were acquired using a 3.0 T Siemens Trio MRI system at the
Hospital Clinic of Barcelona. Functional images were obtained using a
single-shot T2*-weighted gradient-echo EPI sequence (slice
thickness = 4 mm; no gap; number of slices = 32, order of acquisition
interleaved; repetition time (TR) = 2000 ms; echo time (TE) = 29 ms;
flip angle = 80°; matrix = 128 x 128; field of view FOV = 240 mm;
voxel size = 1.87 x 1.87 x 4 mm?>). Each slice was aligned to the
plane intersecting the anterior and posterior commissures. In addition
to the functional runs a high-resolution T1-weighted image (slice
thickness = 1 mm; no gap; number of slices = 240; repetition time
(TR) = 2300 ms; echo time (TE) = 3 ms; matrix = 256 x 256; field of
view (FOV) = 244 mm) was also acquired for each subject.

Replication cohort

Images were acquired using a 3.0 T Siemens Allegra MRI system at
International Neuroscience Institute in Hannover, Germany. Functional
images were obtained using a single-shot T2*-weighted gradient-echo
EPI sequence (slice thickness = 3 mm; distance factor = 25%
(0,7 mm); number of slices = 34, order of acquisition interleaved; rep-
etition time (TR) = 2000 ms; echo time (TE) = 30 ms; flip angle = 80°;
matrix = 128 x 128; FOV = 192 mm; voxel size = 3x3x3 mm?). Each
slice was aligned to the plane intersecting the anterior and posterior

commissures. In addition to the functional runs a high-resolution
T1-weighted image (slice thickness = 1 mm; no gap; number of
slices = 192; repetition time (TR) = 15 ms; echo time (TE) = 4.9 ms;
matrix = 256 x 256; FOV = 256 mm) was also acquired for each
subject.

Preprocessing and ICA analysis

In both cohorts, the ICA analysis was performed on the fMRI data acquired
during the learning phase

Data were preprocessed using Statistical Parameter Mapping soft-
ware (SPMS8, Wellcome Department of Imaging Neuroscience, University
College, London, UK, www.fil.ion.ucl.ac.uk/spm/). For the main cohort,
the two functional runs were realigned and their mean image was
calculated. The structural T1s were co-registered to their respective
mean functional image and segmented using the New Segment toolbox
included in SPM8. Following segmentation, gray and white matter im-
ages were fed to DARTEL (Ashburner, 2007) in order to achieve normal-
ization. After normalization, data was subsampled to 1.5x1.5x1.5 mm>
(121x145x121 voxels) and spatially smoothed with an 8x8x8 full
width at half maximum (FWHM) Gaussian kernel. For the replication
cohort, the three functional runs were also realigned and a mean image
of all the EPIs was created. After an initial 12-parameter affine transfor-
mation of this mean to the EPI MNI template, the resulting normalization
parameters derived were applied to the whole functional set. Finally,
functional EPI volumes were re-sampled into 4x4x4 mm voxels and
spatially smoothed with an 8 mm FWHM kernel.

Group Spatial ICA was used to extract the different networks present
during each of the experiments using the GIFT software (http://icatb.
sourceforge.net/). ICA was applied with the number of independent
components set to 20, which has been shown to be an optimal dimen-
sion in previous studies (Forn et al., 2013; Smith et al., 2009). Following
this, the functional images from each of the cohorts were analyzed using
group ICA, which started with an intensity normalization step. After this
first step, data was first concatenated and then reduced to 20 temporal
dimensions (using principal component analysis), to be then analyzed
with the infomax algorithm (Bell and Sejnowski, 1995). No scaling
was used, as with the intensity normalization step, the intensities of
the spatial maps obtained are already in percentage of signal change.

A one-sample t-test was calculated using the individual spatial
maps, which treats each subject's network as a random effect (Calhoun
et al.,, 2001). All networks (see Fig. 2) are shown at p < 0.01 corrected
using the false discovery rate (FDR) algorithm with a cluster extent of
30 voxels. FDR correction has been widely used to report ICA compo-
nents (Calhoun et al., 2001, 2008; Eichele et al., 2008; Forn et al., 2013;
Wau et al,, 2009). (See Fig. 1.)

Calculation of task-related networks

In order to identify which of the networks retrieved were related to
the task (i. e., word learning from fluent speech), a multiple regression
was calculated using GIFT. This allows fitting each subject's component
time course to the model. Models were created using SPM8 by convolv-
ing a canonical hemodynamic response with the timing of the active
and resting blocks of the learning phase. First, all networks were visually
inspected in order to detect artifactual components reflecting move-
ments, ventricles, edges or the presence of blood vessels. Eight networks
from the main cohort and 6 from the replication cohort were discarded.
Then, for the remaining networks (12 for the first and 14 for the second
cohort), a model including only two conditions was created: learning
from fluent speech (active blocks) and rest. For each of the remaining
networks, a one-sample t-test was performed on all the beta values ob-
tained from the learning condition regressor. A network was considered
task-related if the regressor survived the fit (p < 0.05, uncorrected for
multiple comparisons; Calhoun et al., 2008; Forn et al., 2013; see Fig. 2
and Tables 3 and 4). The analysis of the task-relatedness of the networks

Please cite this article as: Lopez-Barroso, D., et al., Multiple brain networks underpinning word learning from fluent speech revealed by
independent component analysis, Neurolmage (2015), http://dx.doi.org/10.1016/j.neuroimage.2014.12.085

226
227
228
229
230

231

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
A7
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
Q3

270

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287


http://www.fil.ion.ucl.ac.uk/spm/
http://icatb.sourceforge.net/
http://icatb.sourceforge.net/
http://dx.doi.org/10.1016/j.neuroimage.2014.12.085

288
289
290

292
293
294
295
296
297
298
299
300
301

303
304
305
306
307
308
309

310

311
312
313
314
315
316
317
318
319
320

322
323
324
325
326
327
328
329
330

t1.1
t1.2
t1.3
t1.4

t1.6
t1.7
t1.8
t1.9
t1.10
t1.11

t1.12

t1.13

t1.14
t1.15

D. Lopez-Barroso et al. / Neurolmage xxx (2015) XxX-Xxx 5

extracted for the second cohort was done specifically to replicate the
results obtained in the main cohort. Independent replication is crucial
to differentiate true effects from random noise and to firmly establish
a result (Bennet et al., 2009; Button et al., 2013). It also minimizes
Type I errors, as false positives are not likely to replicate across different
studies (Lieberman and Cunningham, 2009). At the same time it allows
avoiding committing Type Il errors that may rise from a too restrictive
Bonferroni correction. Replicating the same networks in two different
cohorts of individuals with different language backgrounds, with MRI
data being collected in different scanners, and also using two different
sets of stimuli (one following the phonotactic rules of Spanish and the
other of German) proves that the reported networks do not come
from spurious correlations. In agreement with this, here we focused
our discussion on the networks that were significantly engaged during
both the main and the replication cohorts. In addition, and in order to
provide the reader with all the information, we indicate which of
these networks survived the correction for multiple comparisons.
Note that our strongest claims are therefore limited to these networks.
Tables 1, 2 and 4 show which of the task-related networks survived a
Bonferroni correction for multiple comparisons: p-values under
0.0041 for the first cohort (12 networks were tested), under 0.0035
for the second (14 networks tested).

Relationship between network engagement and learning performance

Once the networks significantly engaged during word learning were
established, a second fine-grained task-related analysis was performed.
The aim was to relate each task-related network with learning perfor-
mance over time. For this, we calculated a new model defining 5 condi-
tions: learning during block 1, 2, 3 and 4, and rest. This analysis was only
performed for the main cohort, as behavioral responses inside the
scanner were not available for the replication cohort. Therefore, an
independent beta value for each of the four blocks comprising the task
(two repetitions per condition in each of the two runs) was extracted
for the 5 task-related networks replicated in both cohorts. Once again,
a one-sample t-test was carried out on all the beta values for the active
task regressor of each block (p < 0.05, uncorrected for multiple compar-
isons). The networks surviving the correction for multiple comparisons
are indicated in Table 5 (p-values under 0.0025, as four blocks were
tested for 5 networks). As no replication here was possible, only the
networks surviving multiple comparisons correction were further ana-
lyzed. Therefore, correlations were calculated between word learning
performance (d prime) and each participant's beta value only for
those blocks and networks. In addition, correlations were performed
using the Robust Correlation Toolbox (Pernet et al., 2013) to compute
Pearson skipped correlations (Rousseeuw and Van Driessen, 1999;

Table 1

Rousseeuw, 1984; Verboten and Hubert, 2005) which involve multivar-
iate outlier detection and can provide a more robust measure of
correlation (Rousselet and Pernet, 2012). In this last analysis, which

was done to confirm a direct relationship with learning performance, :
no correction for multiple comparisons was applied (6 correlations :

were calculated: first block, dAPMN and dSMN; second block, dAPMN;
third block, dAPMN; fourth block, dAPMN and dSMN; see Results
section).

Results
ICA decomposition

Main cohort si es un efecto de novelty en mi habituado sistema cognoscitivo.
Block analysis). Block 2 for the dorsal auditory-premotor network

Three out of the 12 ICA networks after removal of those correspond-
ing to artifacts were significantly positively correlated to the word-
learning task (see Table 1 for statistical values) with a fourth one
being marginally related (p = 0.052). These same three networks
were also retrieved as task-related in the replication cohort (see
below). From those, only two out of three networks survived the correc-
tion for multiple comparisons (dorsal Auditory-Premotor Network and
dorsal Sensory-Motor Network; Table 1). The task-related ICA maps
(networks) are displayed in Fig. 2 (left panels) along with their respec-
tive BOLD time courses. Three of these networks were considered
“dorsal” networks (Table 1): a dorsal Auditory-Premotor Network
(dAPMN, Fig. 2A) covering the bilateral superior temporal gyrus (STG)
and superior temporal sulcus (STS) extending to the dorsal part of the
middle temporal gyrus (MTG), the Sylvian Parietal Temporal area
(SPT), the premotor cortex (PMC), the supplementary motor area
(SMA) and pre-SMA; a dorsal Sensory-Motor Network (dSMN, Fig. 2B)
comprising the pre- and post-central gyri, PMC and SMA; and a left
lateralized dorsal Fronto-Parietal Network (dFPN, Fig. 2C) covering

mainly frontal (including the inferior [IFG] and middle [MFG] frontal :
gyrus) and parietal (both inferior and superior) areas. The fourth :

network, marginally related to the task, was identified as a ventral
Fronto-Temporal Network (VFTN, Fig. 2D), covering the prefrontal and
insular cortex, the anterior superior and middle temporal cortex and
the caudate nucleus. Finally, the Default Mode Network (DMN, Fig. 3A)
was the only network significantly negatively correlated with the task.
The DMN comprised its typical constituents, i.e. bilateral parietal and
occipital gyri, the precuneus, posterior and middle cingulate gyri, the
superior middle frontal and the anterior cingulate gyri.

The remaining 7 networks that did not pass the threshold to be
considered related to the task (p < 0.05) were labeled as: Superior
Parietal, Lateral Visual, Cerebellar, Medial Visual, Cingulate, Mesial

Different task-related ICA networks with their respective areas of activation and their statistical level of task relatedness for the main cohort of participants (n = 27). TRN: task-related
network; BA: Brodmann areas; dAPMN: dorsal auditory-premotor network; dSMN: dorsal sensory-motor network; dFPN: dorsal fronto-parietal network; vFTN: ventral fronto-temporal

network; DMN: default mode network. * Survived the correction for multiple comparisons.

TRN Activation region BA Task relatedness
T-val (p-val)
dAPMN Bilateral sup/mid temporal gyrus; bilateral heschl gyrus; bilateral insula; bilateral precentral gyrus; left postcentral 22,21,13,41,42,6,4 15.20 (0.001)*
Fig. 2A  gyrus; supplementary motor area; pre-supplementary motor area
dSMN Bilateral precentral gyrus; bilateral postcentral gyrus; supplementary motor area; pre-supplementary motor area; 43,6,2,24 3.77 (0.001)*
Fig. 2B bilateral middle cingulate gyrus
dFPN Left sup/inf temporal gyrus; bilateral middle temporal gyrus; bilateral angular gyrus; left supramarginal gyrus; 44,4546/47,21,22,20,1937,3940,7,  2.12 (0.043)
Fig. 2C bilateral superior occipital gyrus; left inf/mid occipital gyrus; bilateral inf/sup parietal gyrus; left precuneus; bilateral 89,10,11,6
inferior frontal gyrus orb/trian/oper; bilateral middle frontal gyrus; left superior frontal gyrus; supplementary motor
area; bilateral precentral gyrus
VFTN Bilateral insula; bilateral temporal pole; bilateral inf. frontal gyrus pars triang/oper/orb; bilateral anterior 47,45,44,38,22,13,40,10,9,32 2.03 (0.052)
Fig. 2D cingulate gyrus; bilateral frontal superior medial gyrus; bilateral caudate head; left globus pallidum; bilateral
mid/sup temporal gyrus; bilateral supramarginal gyrus; bilateral angular gyrus; bilateral inferior parietal gyrus
DMN Bilateral cuneus; bilateral precuneus; bilateral middle occipital gyrus; bilateral inferior parietal gyrus; bilateral 40,39,7,22,19,31,29,5,238,9,10,11,32 —2.58 (0.015)
Fig. 3A angular gyrus; bilateral middle temporal; bilateral ant/post/mid cingulate gyrus; bilateral sup/mid frontal gyrus;
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Table 2

Different task-related ICA networks with their respective areas of activation and their statistical level of task relatedness from the replication cohort (n = 16). TRN: task-related network;
BA: Brodmann areas; dAPMN: dorsal auditory-premotor network; dSMN: dorsal sensory-motor network; dFPN: dorsal fronto-parietal network; vFTN: ventral fronto-temporal network;

DMN: default mode network; VLN: visual lateral network; IN: insular network.

TRN Activation region BA Task relatedness
T-val (p-val)
dAPMN Bilateral sup/mid temporal gyri; bilateral heschl gyri; bilateral insula; left precentral gyrus; left postcentral 22,21,13,41,42 6,4 18.00 (0.001)"
Fig. 2A  gyrus.
dSMN Bilateral precentral gyri; bilateral postcentral gyri; supplementary motor area; pre-supplementary motor  4,3,6,2,24 4.73 (0.001)*
Fig. 2B  area; bilateral middle cingulate gyri; bilateral thalamus; bilateral caudate.
dFPN Left inf/mid temporal gyrus; bilateral angular gyri; left supramarginal gyrus; bilateral superior occipital gyri; left ~ 44,45,46,47,21,22,20,1937,39,40,7,8,9 3.30 (0.004)
Fig. 2C  inf/mid occipital gyrus; bilateral inf/sup parietal gyri; left precuneus; left inferior frontal gyrus orb/trian/oper; 10,116
bilateral middle frontal gyri; left superior frontal gyrus; supplementary motor area; left precentral gyri; left
hippocampus.
VFTN Bilateral insula; bilateral temporal pole; bilateral inf. frontal gyri pars trian/oper/orb; supplementary motor 47,45,44,38 22,21,13,40,89 2.19 (0.045)
Fig. 2D  area; bilateral frontal superior medial gyri; bilateral caudate head; bilateral globus pallidum; bilateral
middle/superior temporal gyri; bilateral supramarginal gyri; bilateral angular gyri.
DMN Bilateral cuneus; bilateral precuneus; bilateral superior/middle occipital gyrus; bilateral anterior/posterior/middle 7,31,23,32,4019,39 —3.13(0.007)
Fig. 3B cingulate gyrus; bilateral angular gyrus; bilateral sup/infr parietal gyrus; right middle temporal.
VLN Bilateral mid./sup./inf. occipital gyri; bilateral sup/inf. parietal gyri; bilateral fusiform gyri; bilateral mid/inf 19,18,7,37,40 10 2.31(0.035)
Fig. SIA temporal; bilateral postcentral gyri; bilateral cuneus; bilateral lingual gyrus; bilateral middle frontal
IN Bilateral insula; bilateral precentral gyri; bilateral postcentral gyri; supplementary motor area; cuneus. 6,31,13 3.95 (0.0015)*
Fig. S1B

2 Survived the correction for multiple comparisons.

Temporal and right Fronto-Parietal (see Table 3). All of these networks
have been previously identified and reported both during active task
and resting state paradigms (Forn et al., 2013; Smith et al., 2009; Tie
et al., 2008).

Replication cohort

Six out of the 14 ICA networks remaining after removal of corre-
sponding to artifacts were significantly positively correlated to the
word-learning task (see Table 2 for statistical values). The three
task-related networks identified in the main cohort (dAPMN, dSMN,
dFPN) were among those six networks. In addition, it is worth mention-
ing that the fourth network, the vFTN, passed the significance threshold
(p <0.045, see Table 2 and Fig. 2, right panel) while in the main cohort
this network resulted marginally related (p = 0.052). Importantly, the
areas belonging to these networks were highly consistent compared
with the ones belonging to the networks from the main cohort (see
Fig. 2, left panel). As in the main cohort, the engagement of the

Main cohort B

dAPMN and dSMN survived multiple comparison correction. The two
other networks that correlated with the model were an Insular Network
comprising the insula bilaterally and the SMA; and a Lateral Visual
Network covering the lateral aspects of bilateral superior, middle and
inferior occipital and fusiform gyri (Table 2). The latter network was
retrieved also in the main cohort but there it did not appear related to
the task (see Table 3 for statistical values). Again, the DMN was the
only network significantly negatively correlated with the task (see
Fig. 3B). The remaining 7 networks that did not pass the threshold to
be considered related to the task (p < 0.05) were very similar to those
that did not reach the threshold either in the main cohort. These
networks have also been previously reported both in task-related and
resting state ICA studies (Forn et al.,, 2013; Smith et al., 2009; Tie et al.,
2008) and were labelled as Medial Visual, Medial Inferior Visual (covering
mainly the calcarine visual cortex), Cerebellar, Mesial Temporal, right
Fronto-Parietal, Posterior DMN and Superior Medial Fronto-Parietal (see
Table 4 for a description and statistical analysis).

Replication cohort

R0 . 27 -62 3 2
‘% 12
= r 2 8
L R L L R L R L y
5 5
§ 002} S 0.02f .
S 0f S o0 A
2-0.02 T.0.02
) )
% -0.04 2.0.04 = s ‘ ; P .
;\2 \(2 20 40 60 80 100 120 140
Time (TR) ° Time (TR)

Fig. 3. The default mode network, which resulted anticorrelated with the task in the main (A) and the replication (B) cohorts, is rendered onto the MNI template at representative coronal,
sagittal and axial slices with MNI coordinates in millimeters shown in the top left corners. The average time course over the 27 subjects in the main cohort and over the 16 subjects in
replication cohort (blue line), and the standard error of the mean (white lines) are shown. The components are shown with a cluster extent of 30 voxels with a 1% false discovery rate

with the threshold bar shown at the right of the panel. L: left; R: right.
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Table 3

Different non task-related networks with their respective areas of activation and their statistical level of task relatedness for the main cohort. NTRN: non-task-related network; BA:

Brodmann areas.

NTRN Activation region BA Task relatedness
T-val (p-value)
Sup. parietal Bilateral precuneus; bilateral sup/inf parietal gyrus; bilateral postcentral gyrus; bilateral middle occipital gyrus; 7,40,5,31 —0.36 (0.71)
bilateral middle cingulum.
Visual lat. Bilateral sup/mid/inf occipital gyrus; bilateral fusiform gyrus; bilateral mid/inf temporal gyrus; bilateral lingual gyrus. 19,18,37,7 1.03 (0.31)
Cerebellar Cerebellum; vermis; pons. - 0.87 (0.39)
Medial Bilateral calcarine; bilareal lingual gyrus; bilateral cuneus; bilateral middle/superior occipital gyrus; bilateral precuneus. 19,18,7,31,1730 —1.12 (0.27)
visual
Cingulate Bilateral frontal medial gyrus pars orbitalis; bilateral frontal superior medial gyrus; bilateral anterior cingulate 10,11,32 —0.73(047)
gyrus; bilateral rectus; bilateral caudate.
Mesial temp  Bilateral temporal pole; bilateral parahipocampal gyrus; left middle temporal gyrus; bilateral hippocampus; bilateral 38,34,21,28 35,20,28 —0.01 (0.99)
fusiform gyrus; bilateral amygdala.
Right fronto  Bilateral middle frontal gyrus; right superior frontal gyrus; right inferior frontal gyrus part orb/trian/oper; right 10,9,8,6,46 11,47,454  1.20 (0.23)
parietal frontal medial gyrus pars orbitalis; right frontal superior medial gyrus; right precentral gyrus; right anterior 32,23,40,7 39

cingulate gyrus; bilateral middle cingulate gyrus; bilateral angular gyrus; bilateral superior/inferior parietal gyrus;
bilateral precuneus; right supramarginal gyrus; right mid/sup occipital gyrus.

Network engagements across blocks and word learning performance

First Block: the dAPMN, the dSMN, the dFPN and the vFPN were
active during the first block, while the DMN was deactivated (Table 5
and Fig. 4). Second block: only the dAPMN remained significantly active,
while the DMN was again significantly disengaged (Table 5 and Fig. 4).
Third block: only the dAPMN was active during the third block (Table 5
and Fig. 4). Fourth block: the dAPMN and the dSMN were active during
the last block (Table 5 and Fig. 4). The dAPMN engagement survived
Bonferroni correction in all blocks and the dSMN in the first and fourth
blocks.

Pearson skipped correlation analyses revealed that the strength of
connectivity of the dAPMN during the second block was significantly
correlated with word learning performance (no bivariate outliers
detected: r = 0.40, p < 0.047; confidence intervals = 0.10, 0.65; see
Fig. 5). A positive trend was also found during the first block although
the p value did not reach the threshold for significance (no bivariate
outliers detected: r = 0.34, p = 0.08; confidence intervals = 0.06,
0.60; Fig. 5).

Discussion

In this study we identified several brain networks whose connectiv-
ity strength increases when adult participants are learning words from
fluent speech. While being exposed to a novel language, three dorsal
networks were engaged in two different and independent samples of
subjects, and a fourth ventral network was significant for one sample
and marginal for the other. Following previous language processing
models (Hickok and Poeppel, 2007; Rauschecker and Scott, 2009), the
three networks were classified as dorsal language related networks.

Table 4

Specifically, an auditory-premotor network, a sensory-motor network
(dSMN) and a fronto-parietal network (dFPN; see Fig. 2A, B and
C) were identified. Thus, segregated sub-networks within the dorsal
stream contribute differentially to the word learning process. Of these,
the dAPMN was significantly active during all four blocks, while the
dSMN was active during the first and last block (Fig. 4). The fourth
task-related network was part of the ventral stream of speech process-
ing (VFTN; see Fig. 2D). Expectedly, the default mode network showed
an opposite pattern, as it was negatively correlated with the task. In
addition, the block analysis engagement of the networks through the
learning phase showed that although this network was significantly
disengaged during the early presentation of the stimuli, it did not
show a negative correlation during the last two blocks (Fig. 4). Interest-
ingly, only the variability in the dAPMN directly correlated with the
differences in individual learning performance during the second
block of the task (and marginally during the first one; Fig. 5). These
results suggest that connectivity between motor and auditory areas is
important in the very early stages of learning when word forms are
extracted from fluent speech. Importantly our results were obtained
through Independent Component Analysis, a fully data-driven approach
without any a priori assumption. Although these networks have been
reported elsewhere during resting state (e.g. Beckmann et al., 2005;
Smith et al., 2009), here we report their specific contribution to word
learning.

The implication of the five reported networks in word learning was
supported by the fact that our results were replicated in a second cohort
of subjects. Consistent task-related networks were observed across both
studies, in spite of different linguistic backgrounds (Spanish vs. German
learners with Spanish and German phonemes respectively), variable
MRI technology (two different 3 T scanners) and acquisition parameters

Different non-task related networks with their respective areas of activation and their statistical level of task relatedness for the replication cohort. NTRN: non-task-related network; BA:

Brodmann area.

NTRN Activation region BA Task relatedness
T-val (p-val)

Med. inf. visual Bilateral calcarine; bilateral inf/mid occipital gyrus. 18,17 —0.38 (0.70)

Cerebellar Cerebellum; vermis; pons - —1.93 (0.07)

Medial visual Bilateral calcarine; bilareal lingual gyrus; bilateral cuneus; bilateral mid/sup occipital gyrus; bilateral 19,18,7,31,1730 —1.47 (0.16)
precuneus

Posterior DMN Bilateral frontal medial gyrus pars orbitalis; bilateral frontal superior medial gyrus; bilateral anterior 10,11,32,31 0.10 (0.92)
cingulate gyrus; bilateral rectus; bilateral caudate; bilateral precuneus; bilateral posterior cingulate gyrus.

Mesial temporal Bilateral temporal pole; bilateral parahipocampal gyrus; bilateral mid/inf temporal gyrus; bilateral 38,34,21,28 35,20,28 1.78 (0.095)
hippocampus; bilateral fusiform gyrus; bilateral amygdala.

Right fronto Right mid/sup frontal gyrus; right inferior frontal gyrus part orb/trian/operc; right frontal superior medial gyrus; 10,8,9,6,46,4547,11,40,7,39 —1.46 (0.16)

parietal bilateral angular gyrus; right supramarginal gyrus; bilateral sup/inf parietal gyrus; right postcentral gyrus.
Superior medial Bilateral frontal superior medial gyrus; bilateral superior middle/frontal gyrus; bilateral anterior cingulate 10,8,9,6,40,39 —1.05 (0.30)

fronto-parietal

gyrus; bilateral angular; left supramarginal gyrus; bilateral inferior parietal gyrus
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Table 5

Statistical indexes of task relatedness for each of the four blocks that composed the word
learning task. TRN: task-related network; BA: Brodmann areas; dAPMN: dorsal auditory-
premotor network; dSMN: dorsal sensory-motor network; dFPN: dorsal fronto-parietal
network; VFTN: ventral fronto-temporal network; DMN: default mode network; VLN: vi-
sual lateral network; IN: insular network.

Block TRN T-value d.f. T-value

1 dAPMN 17.6 26 0.001*
dSMN 4.74 26 0.001°
dFPN 2.67 26 0.015
vFPN 213 26 0.043
DMN —2.85 26 0.009

2 dAPMN 1343 26 0.001°
dSMN 0.29 26 0.77
dFPN 1.57 26 0.12
VFPN 0.36 26 0.72
DMN —2.79 26 0.01

3 dAPMN 18.26 26 0.001*
dSMN 0.93 26 0.36
dFPN 1.12 26 0.27
VvFPN —0.53 26 0.60
DMN —1.69 26 0.10

4 dAPMN 15.55 26 0.001°
dSMN 44 26 0.001°
dFPN 0.84 26 0.40
VFPN —0.03 26 0.97
DMN —1.44 26 0.16

2 Survived the correction for multiple comparisons.

(see Material and Methods section). This further backs our claim, as
false positives are not likely to replicate across independent samples
(Bennet et al., 2009; Button et al., 2013; Lieberman and Cunningham,
2009).

Dorsal networks for word learning

We found three networks that belong to the dorsal fronto-temporo-
parietal stream of language processing (Hickok and Poeppel, 2000; Saur
et al,, 2008). First, the dorsal Auditory-Premotor Network (Fig. 2A),
connecting the pSTG (including the Spt region, located within the
Sylvian fissure at the parieto-temporal boundary), the PMC and the
bilateral SMA, has been associated with auditory-motor integration
(Hickok and Poeppel, 2000; Liberman and Whalen, 2000), an inherent
mechanism of language processing. Interestingly, in our study this was
the only network that (i) was significantly engaged during the four
blocks; (ii) that showed the most robust engagement, as it did survive
multiple comparisons corrections in the different analyses; and (iii)
whose connectivity strength was directly correlated with word learning
performance, marginally during the first and significantly during the
second block of the learning phase. These two properties fit well with
a recent study in which we reported the importance of the direct left
segment of the arcuate fasciculus for word learning and the functional
connectivity between the areas connected by this fascicle (Lépez-
Barroso et al., 2013). In this previous study nevertheless, the analyses
were restricted to the areas of theoretical interest and therefore whole
brain connectivity was not assessed. The consistent finding in this
different study with an additional replication in a cohort from a different
language background and with a data-driven approach gives further
strength to the results.

The importance of motor regions for language processes is also sup-
ported by the implication of the PMC in speech perception (Meister
et al., 2007; Pulvermiiller et al., 2006; Wilson and lacoboni, 2006).
Also, Rauschecker and Scott (2009) proposed a unified function of the
dorsal stream in which the PMC informs the auditory system about
the planned motor sequences that are about to happen (overtly or
covertly), and this is matched with feedback signals from auditory
areas (pSTG), closing the loop. The template-matching function of this
network can therefore have a particularly important role during word
learning from speech (Rodriguez-Fornells et al., 2009). Our results

suggest that this function is particularly important during the initial
contact with the new language, when word forms need first to be
extracted, to be then kept in working memory and finally memorized.

Second, sensory and motor regions were also engaged during the
task, as supported by the identification of the dorsal Sensory-Motor
Network (dSMN, Fig. 2B). Primary related to motor functions (Biswal
et al., 1995), this bilateral network comprises regions from the
precentral and postcentral gyri in addition to supplementary and pre-
supplementary motor and cingulate areas. These regions have been
related to speech production (Alario et al., 2006; Chauvel et al., 1996;
Crosson et al.,, 2001; Krainik et al., 2004; Ziegler et al., 1997). Although
its exact role is still unclear, the anterior part of the SMA is reliably
involved in sequence learning (Hikosaka et al., 1996; Penhune and
Steele, 2012). This network was significantly engaged during the first
and the last blocks of learning, suggesting that the planning of the
articulatory movements (Lau et al.,, 2004) required for the covert
rehearsal (Lopez-Barroso et al., 2011) occurs to a greater extent during
the early contact with the new language for the sequences of syllables
(first block) and then in the last block when word chunks are already
segmented and rehearsed for memorisation.

Third, a left dorsal Fronto-Parietal Network (dFPN, Fig. 2C) compris-
ing the inferior and superior parietal cortex, the IFG, the dorsolateral
prefrontal gyrus and the PMC was identified, which might be consid-
ered as the classical language network. The inferior parietal lobe has
been previously identified as an important region in vocabulary
learning and second-language learning (Golestani and Pallier, 2007;
Leh et al., 2007; Mechelli et al., 2004). This whole network overlaps
with the attentional network (Corbetta and Shulman, 2002; Salmi
et al.,, 2009) and includes the supramarginal gyrus (SMG), involved
also in the maintenance of phonological information in working memo-
ry through an attentional controller mechanism or through short-term
storage (Awh et al., 1996; Chein et al., 2003; Cowan, 2008; Ravizza
et al,, 2004). The appearance of this network suggests an engagement
of both working memory and attention functions in learning of phono-
logical word forms (Baddeley, 2003; De Diego-Balaguer and Lopez-
Barroso, 2010; Lépez-Barroso et al., 2011; Rodriguez-Fornells et al.,
2009).

Ventral network for word learning

The ICA analysis also revealed a ventral Fronto-Temporal network
(Fig. 2D), which comprises the bilateral anterior temporal areas, the
IFG area (including the frontal operculum [FOP]) as well as the bilateral
striatum. Although classically associated to conceptual-semantic analy-
sis (Binder et al., 2009; Hickok and Poeppel, 2007; Lambon Ralph et al.,
2012; Patterson et al., 2007), the implication of the ventral network in
auditory object recognition has been also proposed, allowing categori-
zation of the incoming auditory stimulation as new or familiar (Leaver
and Rauschecker, 2010; Rauschecker and Scott, 2009; Zatorre et al.,
2004). In agreement with this, and regarding the task used in the
current study, the ventral stream could have a role in the recognition
of the phonological chunks (new words) once they have been segment-
ed. Its engagement during word form learning even when there is no
semantic component agrees with previous results indicating a promi-
nent role of this ventral stream when support to the dorsal stream is
needed (L6pez-Barroso et al.,, 2011; Saur et al., 2010). In addition, the
caudate nucleus forms part of this network, which agrees with the
importance of this area for the concatenation of sequences forming a
chunk (Koechlin and Jubault, 2006) in artificial language learning
from visual or auditory sequences (Bahlmann et al., 2008; De Diego-
Balaguer et al, 2008; Doeller et al, 2006; Lieberman, 2000).
Nevertheless, the limited replication of this network, marginally
significant in the main cohort, may go in the direction of a secondary im-
plication of this network compared to the dorsal networks previously
described.
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Interestingly, the four networks identified in the study seem to be
organized in a caudal-dorsal to rostral-ventral fashion (see Fig. 6). This
organization fits well with studies proposing a hierarchical functional
organization of the lateral frontal cortex in relation to cognitive control.
Applied to sequential linguistic processing (e.g. phonemes, syllables,
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words in sentences) this could mean that rostral (anterior) regions
control more abstract and complex structures and caudal (posterior)
regions process and control more concrete information (Badre and
D'Esposito, 2009; Bahlmann et al., 2012, 2014; Christoff et al., 2009;
Koechlin and Jubault, 2006).
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Fig. 4. lllustration of the average network engagement for each block and network for the main cohort. Bars indicates SEM. *p < 0.05; **p < 0.01; ***p < 0.001; - survived the correction for

multiple comparisons.
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Fig. 5. Scatter plots showing the relationship between network engagement and word learning performance in block 1 and block 2 for the dorsal auditory-premotor network. Correlation
indexes and the associated p values are depicted on each plot.

576  The default mode network these blocks with learning performance for the dAPMN may indicate 585

that as learning increases, the DMN gradually engages since the task 586
577 The Default Mode Network (DMN); see Fig. 3) was negatively progressively becomes less demanding. 587
578  correlated with the task. This finding is consistent with the characteris- Finally, the present study has some limitations that should be faced 588

579  tics of the DMN. Since it was first described (Raichle et al., 2001), the in future investigation. On the one hand, the correlation with behavior 589
580  DMN has been related to the gathering of incoming sensory information allowed us to see the networks whose engagement had an effect on 590
581 at rest and has been reported as deactivated during active tasks the accuracy differences found among participants. However, other 591
582  (Kuperberg et al., 2003; Mestres-Missé et al., 2008; Smith et al., 2009). networks showed variations in their engagement with the task and 592
583  The block-wise analysis showed that the DMN was disengaged during although the non-significant correlation with performance indicates 593
584  the first two blocks of stimulation. The concomitant correlation in that they might not affect individual differences in performance, it 594
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Fig. 6. Illustration of the frontal region covered by each of the four networks retrieved in the left hemisphere for the main cohort. For display purposes, only the frontal clusters of each
network are shown in this figure. MNI coordinates in millimeters are shown in the top left corners of each slice.
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does not mean that they are not involved in learning. Therefore, with
this approach, we can spot and segregate the different networks
involved in the task but we are unable to know their specific contribu-
tion to language learning. On the other hand, for this reason also,
although we had a strong hypothesis linking the Auditory-Premotor
Network to word learning performance, the fact that other networks
were also engaged during learning increased the number of correlations
to be performed. Thus, although the correlations were performed with a
specific robustness test and were limited to those networks surviving
multiple corrections and replication, the behavioral correlations report-
ed would have been sounder with a multiple comparison correction.
Finally, it is worth mentioning that in spite of the advantatges of using
ICA to unveil unconstrained brain connectivity compared to classical
GLM fMRI analysis, the interactions between networks are not revealed
with ICA analysis. Further studies are needed in order to assess the
direct influence and direction of the coupling that each network (or
nodes within these networks) exerts over the others (i.e., effective
connectivity) during language learning.
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