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ABSTRACT 
In recent years, car manufacturers have consistently upgraded the audio systems of their vehicles, with audio 
aficionados adding further modifications to them. The acoustics of the vehicle cabin and the sound effects of the 
audio systems have become one of the most important topics of the Research and Development Departments of 
manufacturers. For example, the selected vehicle in this experiment has implemented different spatial audio 
algorithms in its models to achieve a better listening experience. By capitalizing on impulse responses, binaural 
audio technology provides the opportunity and the flexibility to virtually generate the sound effects of a particular 
space without the requirement of physically being in that space. We used binaural technology and the vehicle to 
develop a standardized procedure for the evaluation of car audio systems. A perceptual listening test was integrated 
into this study to verify the procedure and to further evaluate this specific audio system. 

1 Introduction and Background 
People have enjoyed pre-recorded music through 
reproduction systems ever since the phonograph was 
invented. In recent years, with the development of 
recording technology, the mono playback system has 
been developed further into stereo and multichannel 
systems to suit different needs. In addition, digital 
processing technology has improved the sound 
quality and the listening experience. While the 
industry has been focusing on developing products 
like personal headphones and home audio systems for 
consumers for decades, the investment for a better 
audio system on automotive vehicles has mostly been 

limited to high-end vehicle models and audiophiles. 
This creates an opportunity for automotive 
manufacturers to stand out among competitors by 
improving their audio systems. In addition to digital 
signal processing algorithms that read and reproduce 
different audio formats, the acoustics of the vehicle 
cabin need to also be considered, as for example, 
listeners in different seating positions can have 
different sound perceptions. 
 
Binaural audio technology is widely used to examine 
spatial environments and has the advantage of 
virtually generating sound effects in a specific space 
through the impulse response of headphones without 
the need to be in that particular space. Previous 
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research has used binaural technology and binaural 
vehicle impulse responses (BVIRs) to simulate the 
acoustics of an automotive audio reproduction system 
in the laboratory, including testing BVIRs at different 
head angles and under different specific noises (e.g., 
engine, road, wind, etc.) [1,2,3]. In this work, we 
capitalize on BVIRs to reproduce the interior sound 
environment of a specific audio automotive system 
under different seating positions and different digital 
processing algorithms. 

2 Acquiring Impulse Responses 
The audio system of the selected vehicle allows for 
different surround audio effects: Off, Standard, and 
High. This is to create a surround effect even when 
the audio is not in surround format [4]. The tested 
vehicle was not modified, and the BVIRs recording 
was conducted with the vehicle parked in a garage 
with all the electronics off, the windows and doors 
closed, and with no other item nor person in the cabin.  
 
We chose a logarithmically time-varying sinusoid 
sweep as the stimuli for acquiring the impulse 
responses, as it is more robust to artifacts when 
conditions are not ideal [5]. Five-second-long unity-
gained sine sweeps were generated for the left 
channel only stereo, right channel only stereo, and in 
mono, and exported as Wave files in 44.1k Hz sample 
rate and 16-bit depth (this is the audio spec that most 
free streaming services use). 
 
A Neumann KU 100 Dummy Head Binaural 
Microphone was placed at the height of average 
sitting adults to record the sine sweep at the 
investigated seating position (see Fig. 1). The position 
of the Dummy Head was fixed facing straight 
forward, and no head rotation was taken into 
consideration. Since the vehicle can only play 
external audio via Bluetooth from a cell phone or a 
USB drive that is plugged into the vehicle, the three 
generated sine sweeps were imported into a USB 
drive to be played sequentially and automatically by 
the vehicle audio system. The three sine sweeps were 
played and recorded individually under the three 
different spatial audio algorithms (Off, Standard and 
High). The recording session was on a setup with a 
44.1k Hz sampling rate and 16-bit depth, the same as 
the sine sweeps. Since a delay before the audio was 

played was required to allow enough time to get out 
of the vehicle, five seconds of silent audio were 
inserted before each sine sweep. However, since the 
input and the output of the audio system do not share 
the same interface, we manually added a “pop” sound 
after the five-second silence. This sound was played 
just before the sine sweep, so that the beginnings of 
the sine sweeps could be later aligned. Furthermore, 
the end of the sine sweep recording was located 6 
seconds after the start of the sine sweep, to make sure 
it captured all the reverb tails. We manually marked 
the -60dB position as the end of the recordings. We 
then cropped the recording according to the start and 
end points. Finally, we performed a fast 
deconvolution on the cropped recordings to obtain the 
impulse responses (see Fig. 1). 
 

 
Figure 1. Fast Deconvolution Flow Diagram. 

The impulse responses were further processed to 
ensure data quality and to tackle two main issues: a 
low amplitude response and a delay in the acquired 
impulse responses.  
 
The dynamic range of 16-bit audio is roughly 96dB. 
When the peak of the impulse response is lower than 
-36dB, we cannot use the RT60 to judge the end of 
the reverberation or directly use the lower bound -
96dB as the noise floor. Then, to tackle this, we 
globally normalized the resulting impulse response, 
setting the highest peak among all tracks to 0dB, and 
normalizing the other tracks proportionally. With this 
normalization, we can have a better view of the noise 
floor (which is amplified as well) while not changing 
the reproduction results (convolution is linear-shift 
invariant) and preserving the amplitude ratio within 
all tracks. After that, we calculated the noise floor of 
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each channel by taking the mean of the RMS value of 
a silent period at the end of the track. 
 
However, the shift caused by fast deconvolution can 
lead to uncertain starting points of the acquired 
impulse responses. Therefore, it is crucial to find not 
only when the reverb ends, but also when the reverb 
starts. The approach we took started with the 
calculation of the RMS of the entire track for each 
channel. From the first window to the last, when the 
RMS of a certain window was greater than the noise 
floor +6dB, we considered the attack kick-in, and we 
took the starting point of the previous window as the 
starting point of the impulse response. Similarly, 
when the RMS of a window was less than the noise 
floor +6dB (indicating that the end of the 
reverberation time was approaching), we took the end 
point of the next window as the end point of the 
impulse response.  
 

Speaker position\Seats 
Measurement 

Distance 
(inches) 

Distance (cm) Time (ms 
at 9°C) 

Front Seat Position 3 (same) 20  50.8  1.509  

Front Seat Position 3 (opposite) 27 68.58 2.037 

Front Seat Position 9 (same) 20 50.8 1.509 

Front Seat Position 9 (opposite) 23 58.42 1.735 

Back Seat Position 8 (same) 27 68.58 2.037 

Back Seat Position 8 (opposite) 27 68.58 2.037 

Back Seat Position 9 (same) 35 88.9 2.64 

Back Seat Position 9 (opposite) 36 91.44 2.715 

Mid Seat Position 8 (same) 28 71.12 2.112 

Mid Seat Position 8 (opposite) 32 81.28 2.414 

Mid Seat Position 9 (same) 41 104.14 3.093 

Mid Seat Position 9 (opposite) 43.5 110.49 3.281 

Table 1. Speakers Placement Measurement 
 
Finally, to ensure that the binaural playback system 
can reflect the time difference of different channels as 
much as possible (as shown in Table 1) and reduce 
the impact on the Interaural Time Difference (ITD), 
we decided to choose a global starting point for the 
impulse response. We chose the earliest one among 

all channels and ensured that all channels also used 
this starting point. Furthermore, to prevent the “pop” 
sound or other artifacts from appearing, we 
introduced a half-window-length linear fade-in and 
fade-out at the beginning and end of the impulse 
responses. 
 

 
Figure 2. BVIR Signal Processing Flow Diagram. 

After all the processing (see Fig. 2), all BVIRs were 
ready for convolution, with each audio file beginning 
at when the earliest impulse response started with a 
fade-in to the on-set that was 6dB louder than the 
noise floor and ending at its own noise floor fade-out. 

3 Test Stimuli 
The song clips to be convolved with the BVIRs were 
chosen from different five genres of music 
(Ambience, Classical, Jazz, Pop, and Solo) so that the 
effects of the algorithms to different genres could be 
investigated. The duration of the clips was based on 
the tempo of the selected songs and was chosen with 
two 8-bar measures so that the listeners had enough 
time to distinguish the differences between the tracks 
without introducing listening fatigue. Each of the 
clips was between 20 to 30 seconds long. The audio 
spec was the same as the previous audio files (44.1k 
Hz sampling rate and 16-bit depth).  
 
To simulate the sound effects of the audio system and 
the vehicle cabin at each seating position, the 
obtained BVIRs were convolved with the selected 
tracks, using a self-developed Python script (see Fig. 
3). Specifically, the left and the right channels of the 
stereo audio files were read into individual files (left 
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channel only stereo, right channel only stereo). Then, 
the convolution was done by individually convolving 
the left and right channels of the songs with the 
BVIRs obtained from the sine sweep recordings at 
each seating position and with each different 
algorithm. Then, the audio convolved with the left 
channel of the BVIRs was summed together, and the 
same was done for the right channel, finally obtaining 
the left channel and the right channel of the binaural 
audio. Lastly, all the convolved tracks were globally 
normalized to a standard dBFS level to eliminate the 
possibility of misleading the listeners with 
unbalanced levels and audio quality among tracks.  
 

 
Figure 3. Binaural Audio Generation Flow Diagram. 

4 Perceptual Listening Test 
Three songs were selected for each genre. Each of the 
songs represented different artists either from 
different time periods or different production styles. 
Combining the different surround algorithms (Off, 
Standard and High) with the 5 different seating 
positions, 15 different versions of the same song were 
generated, for a total of 45 different tracks per genre. 
One perceptual online listening test per genre was 
developed using oTree, a Python-based framework 
for the development of controlled online behavioural 
experiments [6]. The online perceptual tests were 
presented to participants as an HTML webpage 
running in Google Chrome. Participants were first 
presented with a few lines summarizing the task and 
then with an informed consent page. Upon 
acceptance, detailed instructions for the test were 
presented. Participants were instructed to complete 

the listening test using their own reproduction 
systems, headphones (closed-back and high-
resolution headphones were preferred) and in a quiet 
and controlled environment.  
 
To ensure compliance with these requirements, 
participants first completed a headphone check test 
[7]. Then, the 45 different tracks of a particular genre 
were presented in randomized order. Participants 
were not given any information regarding the 
algorithm used or the specific seating position. After 
listening to each track, participants were asked to 
provide behavioural ratings using a 1-10 scale for 
several measures, including: pleasure, level of noise, 
loudness, clarity (muffled/piercing), immersiveness, 
tone (dark/bright), distance to the sound source, and 
“outside feeling” (how much did you feel the music 
coming from "outside" of your head/body?). 
Familiarity ratings were also collected as a control. 
These questions were selected to assess the subjective 
timbral attributes and spatial impression of the tested 
tracks. Common terminologies were used due to the 
diverse background of the participants.  The 
experiment was coded so that participants could not 
advance to the next page unless the song had been 
played in full (participants had no control over the 
music player) or all answers had been provided.  
 
Participants were recruited from United States using 
Amazon Mechanical Turk (AMT), a platform for the 
acquisition of large online behavioural datasets 
(participants were required to have 99% of previous 
submissions approved on AMT to ensure data 
quality).  Participants provided demographic 
information (gender, age, education), and completed 
tests assessing their musical training (Gold-MSI; 
important to control for musical abilities) [8], and 
their sensitivity to musical reward (the Barcelona 
Music Reward Questionnaire, BMRQ; important to 
screen out participants who cannot experience 
emotion from music, that is, participants with specific 
musical anhedonia) [9]. The two questionnaires 
included an attentional checks (e.g., Please, select the 
option “Agree”). Participants were paid $15. 

5 Statistical Analyses  
Analyses were performed by implementing linear 
mixed modelling (LMM) in R (version 4.0.2) using 
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the lmer4 package [10]. In each analysis we first 
generated an empty model, which contained only a 
random intercept for participants. Next, we generated 
12 different models (see Fig. 4) by adding the main 
conditions (musical genre, seating position in the car, 
surround algorithm) and their interactions, and the 
demographic variables (age, gender, education, 
musical training with the Gold-MSI and sensitivity to 
musical reward with the BMRQ).  
 

 
Figure 4. LMMs. * Reflects an interaction. 

For each behavioural rating, we selected the best 
model explaining the variance in the data using the 
Akaike information criterion (AIC). We considered a 
model different from another if the difference in AIC 
was greater than 2, to balance complexity and 
goodness of fit. If models were separated by less than 
two AIC, we selected the model with fewer factors, 
as this explains the same amount of variance in the 
data using fewer variables. The effects of the different 
predictors were assessed using Type III Wald Chi-
Square tests with post-hoc contrasts being calculated 
using the emmeans package [11] with Tukey 
correction for multiple comparisons.  

6 Results  
Data from a total of 90 participants (22 per genre) was 
collected. Twenty-three participants were excluded 
for: 1) scoring less than 50% in the headphone check 
(33% chance level); 2) failing the attention checks of 
the questionnaires; 3) answering that the model of 
headphones used was “loudspeakers” (note that the 
huge variability in the type of headphones precludes 
a more in-depth analysis that fully explores the effect 
of this variable); and 4) if they had musical anhedonia 
(scoring less than 63 in the BMRQ) [9]. The final 

sample was composed of 67 participants (22 women, 
age=38.6 ±10.2 years).  
 
Regarding pleasure scores, the model with the best fit 
was the one containing algorithm and the 
demographic factors. There was a trend (p=0.06) for 
the choice of algorithm to affect the pleasure reported 
by the participants, regardless of the position of the 
car or the genre.  The comparison between the 
different surround algorithms shows that the pleasure 
reported for music treated with the Standard 
algorithm is marginally higher than when processed 
with the High one (p=0.055; see Fig. 5).  
 

 
Figure 5. Behavioral results for pleasure with 95% 
confidence intervals. The difference between 
Standard and High algorithms trends towards 
significance, regardless of genre or seat (p=0.055). 
 
For immersiveness, the best model contained genre, 
seating position, and the demographic factors (that is, 
the choice of surround algorithm did not have a 
particular effect). Genre significantly predicted 
immersiveness (p=0.043), while the seating position 
trended towards significance (p=0.055). Comparing 
the different levels within these two factors showed 
that Jazz was the genre inducing more immersiveness 
(marginally more immersive than the Solo genre, 
p=0.066) and that the Back Middle seat induced the 
most immersive experience (significantly more 
immersive than the Driver seat, p=0.025; see Fig. 6). 
For the seating position, it is interesting to note that 
the Back Middle seat is the one having the most open 
space within the car, with this possibly affecting the 
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immersive experience. Lastly, the lack of an effect of 
surround algorithm in the reported immersiveness is 
surprising and might indicate that either our 
processing pipeline did not successfully reconstruct 
the effects of each algorithm, or that the different 
algorithms do not significantly increase the subjective 
level of immersiveness perceived by the listeners. 
 

 
Figure 6. Behavioral results for immersiveness with 
95% confidence intervals. Jazz was marginally more 
immersive than Solo (p=0.066). The Back Middle 
seat was significantly more immersive than the Driver 
seat (p=0.025) regardless of algorithm or genre. 
 
Regarding “outside feeling” (i.e., How much did you 
feel the music coming from "outside" of your 
head/body?), the model with the best fit was the one 
that included genre as a main factor and the 
demographic variables (that is, neither algorithm not 
seating position had an effect). Genre was 
significantly (p=0.007) predictive of the reported 
“outside feeling”, with Jazz receiving the highest 
scores, which were significantly different than those 
reported for Classical music (p=0.011; see Fig. 7).   
 
The model with the best fit to the loudness scores was 
the one containing seating position as a main factor 
and the demographic parameters, regardless of the 
choice of algorithm or the genre. As with 
immersiveness, the seating position was predictive of 
the loudness reported (p=0.002; see Fig. 8), with the 
Back Middle seat having the highest rating, 
significantly higher than the Driver (p<0.001) and the 
Back Left seats (p=0.043). The pattern is similar as 

that reported for immersiveness, which suggests that 
immersiveness and loudness might be related.  
 

 
Figure 7. Behavioral results for “outside feeling” 
with 95% confidence intervals. The difference 
between Jazz and Classical is significant (p=0.011), 
regardless of algorithm or seating position.   
 

 
Figure 8. Behavioral results for loudness with 95% 
confidence intervals. The difference between the 
Back Middle and the Driver (p<0.001) and the Back 
Left seats is significant (p=0.043), regardless of genre 
and algorithm. 
 
The results for clarity also mirror those reported for 
loudness and immersiveness, with the best fit being 
the model containing seating position and the 
demographic factors. There was a significant effect of 
seating position (p=0.02; see Fig. 9), with the Back 
Middle seat having the most piercing sound, 
significantly more piercing than the Driver seat 
(p=0.043). These results show that the Back-Middle 
seat induced the highest ratings of immersiveness, 
loudness, and clarity, further suggesting that that the 
more symmetrically opened space around the middle 



Pei (, Li and Ripollés) Automotive Audio System Evaluation Based on the BVIRs 

 

AES Conference on Automotive Audio, Dearborn, MI, USA, June 8–10, 2022  
Page 7 of 8 

seat allows the listener to perceive the sound wave 
more evenly and effectively.  
 
For tone, the model with the best fit was the one 
containing genre and the demographic factors (that is, 
there were no effects of the surround algorithm or the 
seating position). Indeed, genre significantly 
predicted tone (p=0.0015; see Fig. 10), with Jazz 
having the brightest tone, significantly brighter than 
Classical (p=0.015) and Pop music (p=0.036). This 
result suggests that the only factor that affected the 
tone of the stimuli was the tone of the original songs 
themselves, regardless of the surround algorithm used 
or the seating position.  
 
 

 
Figure 9. Behavioral results for clarity with 95% 
confidence intervals. The difference between the 
Back Middle seat and the Driver seat is significant 
(p=0.043), regardless of algorithm and seat. 
 

 
Figure 10. Behavioral results for tone with 95% 
confidence intervals. The difference between Jazz 
and Classical (p=0.015) and Pop music is significant 
(p=0.036), regardless of seat and algorithm. 

 
Interestingly, none of the main factors (seating 
position, genre, and algorithm) significantly 
predicted the reported distance to the source, the 
perceived noise, or the familiarity with the songs. 
Regarding noise, since the sine sweeps were recorded 
under the same environment with minimum 
fluctuation, the noise should be relatively constant, 
and no factors should affect it. This result further 
suggests that our proposed pipeline successfully 
recreated the environment of where the sine sweeps 
were recorded, and that it did not add any artificial 
noise effects. The fact that there was no familiarity 
effect suggests that participants’ previous knowledge 
of the music stimuli did not affect the results. 
 
Finally, we built a LMM to predict pleasure using all 
other behavioural scores provided by the participants, 
regardless of the main factors (seating position, genre, 
and surround algorithm). The model included the 
demographic variables and subject as a random 
intercept. While participants liked a song more if it 
was more familiar, less noisy, less loud, and clearer 
(all p<0.001), the best predictor of pleasure was the 
reported immersiveness (p<0.001; immersiveness 
had the largest estimate: 0.41). This result highlights 
the crucial role of immersiveness in enhancing 
enjoyment for music listening inside of a car. 

7 Conclusions 
The purpose of this study was to capitalize on BVIRs 
to reproduce the interior sound environment of a 
specific automotive system and to assess its acoustics 
under different seating positions and digital 
processing algorithms. The spatial algorithms (Off, 
Standard, High) in this vehicle offer the passengers 
the ability to choose what kind of immersive effect 
they want to experience. However, the results from 
the perceptual listening test did not show any 
significant effect of algorithm in the immersiveness 
reported by the participants. The pleasure reported by 
the participants was slightly affected by the surround 
algorithm, although, surprisingly, the High surround 
algorithm was the one that elicited the lowest pleasure 
scores. This might have been caused by: 1) our signal 
processing procedure; 2) sound coloration from the 
recording equipment; 3) the collected data from the 
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listening test; 4) the reproduction systems 
themselves; 5) factors of noise.  
 
Regarding the seat location, different seat positions 
had significant effects on the reported immersiveness, 
loudness, and clarity, with the Back Middle seat 
providing the best acoustic experience. Second, 
musical genre had a significant effect on 
immersiveness, “outside feeling” and tone, with Jazz 
being reported as the top genre for these scores. Third, 
distance to the sound sources, familiarity and 
perceived noise were not affected by any predicting 
factors. Lastly, participants reported more pleasure 
for tracks which sounded more immersive. The 
developed procedure and results support the use of 
binaural processing technology for the assessment of 
spatial audio, especially when the objective is to 
recreate the acoustics of real-life environments so that 
an end user does not have to physically be in a 
particular space to experience the sound effects of 
that space.  
 
Our study suffers from several caveats. First, the 
reported results could be further confirmed by 
performing a listening test inside of the car (instead 
than in front of a computer while using headphones) 
that includes head-tracking. Second, while the 
postprocessing of the recordings minimizes the risk 
for inconsistencies in the synchrony of the recordings, 
our capture method might introduce small 
inaccuracies by not accounting for the clock drift 
between reproduction and capture systems and for 
system non-linearities. Third, there might be a 
mismatch between the objective of the digital 
algorithms provided by this vehicle audio system and 
the questions of the listening test (e.g., "outside 
feeling" might not necessarily be one of the design 
targets of the surround algorithms). 
 
Despite these caveats, we suggest that the reported 
processing pipeline, along with the proposed 
perceptual listening test, can assist researchers to 
further exam any vehicle audio system. With more 
customizations and improvements, the proposed 
procedure can provide endless possibilities for the 
audio and automotive industry. 
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