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Abstract 35 

Combinatoric linguistic operations underpin human language processes, but how meaning changes 36 

over time is not well understood. We address this puzzle by exploiting the ubiquitous function of 37 

negation. We track the online effects of negation (“not”) and intensifiers (“really”) on the 38 

representation of scalar adjectives (e.g., “good”) in parametrically designed behavioral and 39 

neurophysiological (MEG) experiments. The behavioral data show that participants first interpret 40 

negated adjectives as affirmative and then modify their interpretation towards, but never exactly as, 41 

the opposite meaning. Decoding analyses of neural activity further reveal that negation does not 42 

invert the representation of adjectives (i.e., “not bad” represented as “good”) but rather mitigates 43 

their representation, at early lexical-semantic processing stages. This putative suppression 44 

mechanism of negation is supported by increased synchronization of beta-band neural activity in 45 

sensorimotor areas. The analysis of negation provides a steppingstone to understand how the human 46 

brain represents changes of meaning over time. 47 
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Introduction 69 

A hallmark of language processing is that we combine elements of the stored inventory - informally 70 

speaking, words - and thereby flexibly generate new meanings or change current meanings. The 71 

final representations derive in systematic ways from the combination of individual pieces. The 72 

composed meanings can relate in relatively straightforward ways to the building blocks (e.g., “the 73 

cat sat on the mat”) or stem from more subtle inferential processes (e.g., “this theory is not even 74 

wrong”). A mechanistic understanding of the underlying processes requires characterization of how 75 

meaning representations are constructed in real time. There has been steady progress and productive 76 

debate on syntactic structure building 1–6. In contrast, how novel semantic configurations are 77 

represented over time is less widely investigated. In the experimental approach pursued here, we 78 

build on the existing literature on precisely controlled minimal linguistic environments 7,8. We 79 

deploy a new, simple parametric experimental paradigm that capitalizes on the powerful role that 80 

negation plays in shaping semantic representations of words. While negation is undoubtfully a 81 

complex linguistic operation that can affect comprehension as a function of other linguistic factors 82 

(such as discourse and pragmatics 9–11), our investigation specifically focuses on how negation 83 

operates in phrasal structures. Combining behavioral and neurophysiological data, we show how 84 

word meaning is (and is not) modulated in controlled contexts that contrast affirmative (e.g., “really 85 

good”) and negated (e.g., “not good”) phrases. The results identify models and mechanisms of how 86 

negation, a compelling window into semantic representation, operates in real time.  87 

Negation is ubiquitous – and therefore interesting in its own right. Furthermore, it offers a 88 

compelling linguistic framework to understand how the human brain builds meaning through 89 

combinatoric processes. Intuitively, negated concepts (e.g., “not good”) entertain some relation 90 

with the affirmative concept (e.g., “good”) as well as their counterpart (e.g., “bad”). The function 91 

of negation in natural language has been a matter of longstanding debate among philosophers, 92 

psychologists, logicians, and linguists 12. In spite of its intellectual history and relevance 93 

(interpreting negation was, famously, a point of debate between Bertrand Russell and Ludwig 94 

Wittgenstein), comparatively little research investigates the cognitive and neural mechanisms 95 

underpinning negation. Previous work shows that negated phrases/sentences are processed with 96 

more difficulty (slower, with more errors) than the affirmative counterparts, suggesting an 97 

asymmetry between negated and affirmative representations; furthermore, state-of-the-art artificial 98 

neural networks appear to be largely insensitive to the contextual impacts of negation 13–20. This 99 

asymmetry motivates one fundamental question: how does negation operate?  100 

Studies addressing this question suggest that negation operates as a suppression mechanism 101 

by reducing the extent of available information 21–23, either in two steps 18,24–28 or in one incremental 102 
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step 12,29–31; other studies demonstrate that negation is rapidly and dynamically integrated into 103 

meaning representations 10,32, even unconsciously 33. Within the context of action representation 104 

(e.g., “cut”, “wish”), previous research suggests that negation recruits general-purpose inhibitory 105 

and cognitive control systems 34–41.  106 

While the majority of neuroimaging studies focused on how negation affects action 107 

representation, psycholinguistic research shows that scalar adjectives (e.g., “bad-good”, “close-108 

open”, “empty-full”) offer insight into how negation operates on semantic representations of single 109 

words. These studies provide behavioral evidence that negation can either eliminate the negated 110 

concept and convey the opposite meaning (“not good” = “bad”) or mitigate the meaning of its 111 

antonym along a semantic continuum (“not good” = “less good”, “average”, or “somehow bad”; 112 

11,12,42–44). Thus, the system of polar opposites generated by scalar adjectives provides an especially 113 

useful testbed to investigate changes in representation of abstract concepts along a semantic scale 114 

(e.g., “bad” to “good”), as a function of negation (e.g., “bad” vs. “not good”).  115 

Here, we capitalize on the semantic continuum offered by scalar adjectives to investigate 116 

how negation operates on the representation of abstract concepts (e.g., “bad” vs. “good”). First, we 117 

track how negation affects semantic representations over time in a behavioral study. Next, we use 118 

magnetoencephalography (MEG) and a decoding approach to track the evolution of neural 119 

representations of target adjectives in affirmative and negated phrases. We test four hypotheses: (1) 120 

negation does not change the representation of adjectives (e.g., “not good” = “good”), (2) negation 121 

weakens the representation of adjectives (e.g., “not good” < “good”), (3) negation inverts the 122 

representation of adjectives (e.g., “not good” = “bad”), and (4) negation changes the representation 123 

of adjectives to another representation (e.g., “not good” = e.g., “unacceptable”). The combined 124 

behavioral and neurophysiological data adjudicate among these hypotheses and identify potential 125 

mechanisms that underlie how negation functions in online meaning construction. 126 

 127 

 128 

Results  129 

Experiment 1: Continuous mouse tracking reveals a two-stage representation of negated 130 

adjectives 131 

Experiment 1 (online behavioral experiment; N = 78) aimed to track changes in representation over 132 

time of scalar adjectives in affirmative and negated phrases. Participants read two-to-three-word 133 

phrases comprising one or two modifiers (“not” and “really”) and a scalar adjective (e.g., “really 134 

really good”, “really not quiet”, “not ### fast”). The number and position of modifiers were 135 

manipulated to allow for a characterization of negation in simple and complex phrasal contexts, 136 
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above and beyond single word processing. Adjectives were selected to represent opposite poles 137 

(i.e., antonyms) of the respective semantic scales: low pole of the scale (e.g., “bad”, “ugly”, “sad”, 138 

“cold”, “slow”, and “small”) and high pole of the scale (e.g., “good”, “beautiful”, “happy”, “hot”, 139 

“fast”, and “big”). A sequence of dashes was used to indicate the absence of a modifier. Fig. 1A 140 

and Table S1 provide a comprehensive list of the linguistic stimuli. On every trial, participants 141 

rated the overall meaning of each phrase on a scale defined by each antonym pair (Fig. 1A). We 142 

analyzed reaction times and continuous mouse trajectories, which consist of the positions of the 143 

participant’s mouse cursor while rating the phrase meaning. Continuous mouse trajectories offer 144 

the opportunity to measure the unfolding of word and phrase comprehension over time, thus 145 

providing time-resolved dynamic data that reflect changes in meaning representation 15,45,46. 146 

 

 

 
 

Figure 1. Experimental procedures.  147 

(A) Behavioral procedure. Participants read affirmative or negated adjective phrases (e.g., “really really good”, “### 148 

not bad”) word by word and rated the overall meaning of each phrase on a scale. Each trial consisted of combinations 149 

of “###”, “really”, and “not” in word positions 1 and 2, followed by an adjective representing the low or high pole 150 

across six possible scalar dimensions. Before each trial, participants were informed about the scale direction, e.g., “bad” 151 

to “good”, i.e., 1 to 10. Scale direction was pseudorandomized across blocks. For each trial, we collected continuous 152 

mouse trajectories throughout the entire trial as well as reaction times. (B) MEG procedure. Participants read 153 

affirmative or negated adjective phrases and were instructed to derive the overall meaning of each adjective phrase on 154 

a scale from 0 to 8, e.g., from “really really bad” to “really really good”. After each phrase, a probe (e.g., 6) was 155 
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presented, and participants were required to indicate whether the probe number correctly represented the overall 156 

meaning of the phrase on the scale (yes/no answer, using a keypad). Feedback was provided at the end of each trial 157 

(green or red cross). While performing the task, participants lay supine in a magnetically shielded room while 158 

continuous MEG data were recorded through a 157-channel whole-head axial gradiometer system. Panels A and B: 159 

“###” = no modifier; IWI = inter-word-interval. 160 

 161 

 162 

Reaction times. To evaluate the effect of antonyms and of negation on reaction times in behavioral 163 

Experiment 1, we performed a 2 (antonym: low vs. high) x 2 (negation: negated vs. affirmative) 164 

repeated-measures ANOVA. The results revealed a significant main effect of antonyms (F(1,77) = 165 

60.83, p < 0.001, ηp2 = 0.44) and a significant main effect of negation (F(1,77) = 104.21, p < 0.001, 166 

ηp2 = 0.57, Fig.2A). No significant crossover interaction between antonyms and negation was 167 

observed (p > 0.05). Participants were faster for high adjectives (e.g., “good”) than for low 168 

adjectives (e.g., “bad”) and for affirmative phrases (e.g., “really really good”) than for negated 169 

phrases (e.g., “really not good”). These results support previous behavioral data showing that 170 

negation is associated with increased processing difficulty 15,16. A further analysis including the 171 

number of modifiers as factor (i.e., complexity) indicates that participants were faster for phrases 172 

with two modifiers, e.g., “not really”, than phrases with one modifier, e.g., “not ###” (F(1,77) = 173 

16.02, p < 0.001, ηp2 = 0.17), suggesting that the placeholder “###” may induce some interference 174 

to this otherwise relatively natural language task.  175 

 176 

Continuous mouse trajectories. Continuous mouse trajectories across all adjective pairs and across 177 

all participants are depicted in Fig.2B and Fig.2C (low and high summarize the two antonyms 178 

across all scalar dimensions, see Fig.S1 for each adjective dimension separately).  179 

To quantify how the final interpretation of scalar adjectives changes as a function of 180 

negation, we first performed a 2 (antonym: low vs. high) x 2 (negation: negated vs. affirmative) 181 

repeated-measures ANOVA for participants’ ends of trajectories (filled circles in Fig.2B), which 182 

reveal a significant main effect of antonyms (F(1,77) = 338.57, p < 0.001, ηp2 = 0.83), a significant 183 

main effect of negation (F(1,77) = 65.50, p < 0.001, ηp2 = 0.46), and a significant antonyms by 184 

negation interaction (F(1,77) = 1346.07, p < 0.001, ηp2 = 0.95). Post-hoc tests show that the final 185 

interpretation of negated phrases is located at a more central portion on the semantic scale than that 186 

of affirmative phrases (affirmative low < negated high, and affirmative high > negated low, pholm < 187 

0.001). Furthermore, the final interpretation of negated phrases is significantly more variable 188 

(measured as standard deviations) than that of affirmative phrases (F(1,77) = 78.14, p < 0.001, ηp2 189 

= 0.50). Taken together, these results suggest that negation shifts the final interpretation of 190 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2023. ; https://doi.org/10.1101/2022.10.14.512299doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512299


7 
 

adjectives towards the antonyms, but never to a degree that overlaps with the interpretation of the 191 

affirmative antonym. 192 

Second, we explored the temporal dynamics of adjective representation as a function of 193 

negation (i.e., from the presentation of word 1 to the final interpretation; lines in Fig.2C). While 194 

mouse trajectories of affirmative phrases branch towards either side of the scale and remain on that 195 

side until the final interpretation (lines in the left, gray, zoomed-in panel in Fig.2C), trajectories of 196 

negated phrases first deviate towards the side of the adjective and then towards the side of the 197 

antonym, to reach the final interpretation (i.e., “not low” first towards “low” and then towards 198 

“high”; right, gray, zoomed-in panel in Fig.2C; see Fig.S1 for each adjective dimension separately). 199 

To characterize the degree of deviation towards each side of the scale, we performed regression 200 

analyses with antonyms as the predictor and mouse trajectories as the dependent variable (see 201 

Methods). The results confirm this observation, showing that (1) in affirmative phrases, betas are 202 

positive (i.e., mouse trajectories moving towards the adjective) starting at 300 ms from adjective 203 

onset (p < 0.001, green line in Fig.2D); and that (2) in negated phrases, betas are positive between 204 

450 and 580 ms from adjective onset (i.e., mouse trajectories moving towards the adjective, p = 205 

0.04), and only become negative (i.e., mouse trajectories moving towards the antonym, p < 0.001) 206 

from 700 ms from adjective onset (red line in Fig.2D). Note that beta values of negated phrases are 207 

smaller than that for affirmative phrases, again suggesting that negation does not invert the 208 

interpretation of the adjective to that of the antonym.  209 

Finally, we replicated this experiment in a new group of 55 online participants (Fig.S2). 210 

The replication illustrates the robustness of the behavioral mouse tracking findings, even in the 211 

absence of feedback. Taken together, these results suggest that participants initially interpreted 212 

negated phrases as affirmative (e.g., “not good” interpreted along the “good” side of the scale) and 213 

later as a mitigated interpretation of the opposite meaning (e.g., the antonym “bad”). 214 

 215 
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Figure 2. Behavioral results.  216 

(A) Reaction times results for the online behavioral study (n=78). Bars represent the participants' mean ± SEM and 217 

dots represent individual participants. Participants were faster for high adjectives (e.g., “good”) than for low adjectives 218 

(e.g., “bad”) and for affirmative phrases (e.g., “really really good”) than for negated phrases (e.g., “really not good”). 219 

The results support previous behavioral data showing that negation is associated with increased processing difficulty. 220 

(B) Final interpretations (i.e., end of trajectories) of each phrase, represented by filled circles (purple = low, orange = 221 

high), averaged across adjective dimensions and participants, showing that negation never inverts the interpretation of 222 

adjectives to that of their antonyms. (C) Mouse trajectories for low (purple) and high (orange) antonyms, for each 223 

modifier (shades of orange and purple) and for affirmative (left panel) and negated (right panel) phrases. Zoomed-in 224 

panels at the bottom demonstrate that mouse trajectories of affirmative phrases branch towards the adjective’s side of 225 

the scale and remain on that side until the final interpretation; in contrast, the trajectories of negated phrases first deviate 226 

towards the side of the adjective and subsequently towards the side of the antonym. This result is confirmed by linear 227 

models fitted to the data at each timepoint in D. (D) Beta values (average over 78 participants) over time, separately 228 

for affirmative and negated phrases. Thicker lines indicate significant time windows. Panels C, D: black vertical dashed 229 
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lines indicate the presentation onset of each word: modifier 1, modifier 2 and adjective; each line and shading represent 230 

participants' mean ± SEM; Panels A,B,D: *** p < 0.001; * p < 0.05. 231 

 232 

Experiment 2: MEG shows that negation weakens the representation of adjectives and recruits 233 

response inhibition networks 234 

In this study (MEG experiment, N = 26), participants read adjective phrases comprising one or two 235 

modifiers (“not” and “really”) and scalar adjectives across different dimensions (e.g., “really really 236 

good”, “really not quiet”, “not ### dark”). Adjectives were selected to represent opposite poles 237 

(i.e., the antonyms) of the respective semantic scales: low pole of the scale (e.g., “bad”, “cool”, 238 

“quiet”, “dark”) and high pole of the scale (e.g., “good”, “warm”, “loud”, “bright”). A sequence of 239 

dashes was used to indicate the absence of a modifier. Fig. 1B and Table S2 provide the 240 

comprehensive list of the linguistic stimuli. Participants were asked to indicate whether a probe 241 

(e.g., 6) correctly represented the meaning of the phrase on a scale from “really really low” (0) to 242 

“really really high” (8) (yes/no answer, Fig.1B). Behavioral data of Experiment 2 replicate that of 243 

Experiment 1: negated phrases are processed slower and with more errors than affirmative phrases 244 

(main effect of negation for RTs: F(1,25) = 26.44, p < 0.001, ηp2 = 0.51; main effect of negation for 245 

accuracy: F(1,25) = 8.03, p = 0.009, ηp2 = 0.24).  246 

The MEG analysis, using largely temporal and spatial decoding approaches 47, comprises 247 

four steps: (1) we first identify the temporal correlates of simple word representation (i.e., the words 248 

“really” and “not” in the modifier position, and each pair of scalar adjectives in the second word 249 

position, i.e., the head position); (2) we test lexical-semantic representations of adjectives over time 250 

beyond the single word level, by entering low (“bad”, “cool”, “quiet” and “dark”) and high (“good”, 251 

“warm”, “loud” and “bright”) antonyms in the same model. We then test the representation of the 252 

negation operator over time; (3) we then ask how negation operates on the representation of 253 

adjectives, by teasing apart four possible mechanisms (i.e., No effect, Mitigation, Inversion, 254 

Change); (4) we explore changes in beta power as a function of negation (motivated by the literature 255 

implicating beta-band neural activity). 256 

 257 

(1) Temporal decoding of single word processing 258 

Results show that the temporal decoding (see Methods) of “really” vs. “not” is significant between 259 

120 and 430 ms and between 520 and 740 ms from the onset of the first modifier (dark gray areas, 260 

p < 0.001 and p = 0.001) and between 90 and 640 ms from the onset of the second modifier (light 261 

gray areas, p < 0.001, Fig.3B). Pairs of antonyms from different scales were similarly decodable 262 

between 90 and 410 ms from adjective onset (quality: 110 to 200 ms, p = 0.002 and 290 to 370 ms, 263 
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p = 0.018; temperature: 140 to 280 ms, p < 0.001; loudness: 110 to 410 ms, p < 0.001; brightness: 264 

90 to 350 ms, p < 0.001, Fig.3C), reflecting time windows during which the brain represents visual, 265 

lexical, and semantic information (e.g., 7,48). 266 

 

 
 

Figure 3. Evoked activity and temporal decoding of modifiers and adjectives as letter strings. 267 

(A) The butterfly (bottom) and topo plots (top) illustrate the event-related fields elicited by the presentation of each 268 

word as well as the probe, with a primarily visual distribution of neural activity right after visual onset (i.e., letter string 269 

processing). We performed multivariate decoding analyses on these preprocessed MEG data. Detector distribution of 270 

MEG system in inset box. fT: femtoTesla magnetic field strength. (B) We estimated the ability of the decoder to 271 

discriminate “really” vs. “not” in either modifier’s position, from all MEG sensors. We contrasted phrases with 272 

modifiers “really ###” and “not ###”, and phrases with modifiers “### not” and “### really”. (C) We evaluated whether 273 

the brain encodes representational differences between each pair of antonyms (e.g., “bad” vs. “good”), in each of the 274 

four dimensions (quality, temperature, loudness, and brightness). The mean across adjective pairs is represented as a 275 
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solid black line; significant windows are indicated by horizontal solid lines below. For panels B and C: AUC = area 276 

under the receiver operating characteristic curve, chance = 0.5 (black horizontal dashed line); For all panels: black 277 

vertical dashed lines indicate the presentation onset of each word: modifier 1, modifier 2, and adjective; each line and 278 

shading represent participants’ mean ± SEM. 279 

 280 

(2) Temporal and spatial decoding of adjectives and negation  281 

After establishing that single words’ features can be successfully decoded in sensible time windows 282 

(see Fig.3), we moved beyond single word representation to selectively evaluate lexical-semantic 283 

differences between low (“bad”, “cool”, “quiet” and “dark”) and high (“good”, “warm”, “loud” and 284 

“bright”) adjectives, regardless of the specific scale (i.e., pooling over quality, temperature, 285 

loudness, and brightness). Temporal decoding analyses (see Methods) reveal significant 286 

decodability of low vs. high antonyms in three time windows between 140 and 560 ms from 287 

adjective onset (140 to 280 ms, p < 0.001; 370 to 460 ms: p = 0.009; 500 to 560 ms: p = 0.044, 288 

purple areas in Fig.4A). No significant differences in lexical-semantic representation between low 289 

and high antonyms were observed in later time windows (i.e., after 560 ms from adjective onset). 290 

The spatial decoding analysis illustrated in Fig.4B (limited to 50-650 ms from adjective onset, see 291 

Methods) show that decoding accuracy for low vs. high antonyms is significantly above chance in 292 

a widespread left-lateralized brain network, encompassing the anterior portion of the superior 293 

temporal lobe, the middle, and the inferior temporal lobe (purple areas in Fig.4B, significant 294 

clusters are indicated by a black contour: left temporal lobe cluster, p = 0.002). A significant cluster 295 

was also found in the right temporal pole, into the insula (p = 0.007). Moreover, we found 296 

significant clusters in the bilateral cingulate gyri (posterior and isthmus) and precunei (left 297 

precuneus/cingulate cluster, p = 0.009; right precuneus/cingulate cluster, p = 0.037). Overall, these 298 

regions are part of the (predominantly left-lateralized) frontotemporal brain network that underpins 299 

lexical-semantic representation and composition 7,8,48–55.  300 
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Figure 4. Temporal and spatial decoding of antonyms across all scales and temporal decoding of negation. 301 

(A) Decoding accuracy (purple line) of lexical-semantic differences between antonyms across all scales (i.e., pooling 302 

over “bad”, “cool”, “quiet” and “dark”; and “good”, “warm”, “loud” and “bright” before fitting the estimators) over 303 

time; significant time windows are indicated by purple areas; (B) Decoding accuracy (shades of purple) for antonyms 304 

across all scales over brain sources (after pooling over the four dimensions), between 50 and 650 ms from adjective 305 

onset. Significant spatial clusters are indicated by a black contour. (C) Decoding accuracy of negation over time, as a 306 
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function of the number of modifiers (1 modifier: dark red line and shading; 2 modifiers: light red line and shading). 307 

Significant time windows are indicated by dark red (1 modifier) and light red (2 modifiers) areas. For all panels: AUC: 308 

area under the receiver operating characteristic curve, chance = 0.5 (black horizontal dashed line); black vertical dashed 309 

lines indicate the presentation onset of each word: modifier1, modifier2 and adjective; each line and shading represent 310 

participants' mean ± SEM; aff = affirmative, neg = negated; LH = left hemisphere; RH = right hemisphere. 311 

 312 

Next, we turn to representations of negation over time. We performed a temporal decoding analysis 313 

for phrases containing “not” vs. phrases not containing “not”, separately for phrases with one and 314 

two modifiers (to account for phrase complexity; see Table S2 for a list of all trials). For phrases 315 

with one modifier, the decoding of negation is significantly higher than chance throughout word 1 316 

(-580 to -500 ms from adjective onset, p = 0.005), then again throughout word 2 (-470 to 0 ms from 317 

adjective onset, p < 0.001). After the presentation of the adjective, negation decodability is again 318 

significantly above chance between 0 and 40 ms (p = 0.034) and between 230 and 290 ms from 319 

adjective onset (p = 0.018; dark red line and shading in Fig.4C). Similarly, for phrases with two 320 

modifiers, the decoding of negation is significantly higher than chance throughout word 1 (-580 to 321 

-410 ms from adjective onset, p = 0.002), throughout word 2 (-400 to 0 ms from adjective onset, p 322 

< 0.001), and for a longer time window from adjective onset compared to phrases with one modifier, 323 

i.e., between 0 and 720 ms (0 to 430 ms, p < 0.001; 440 to 500 ms, p = 0.030; 500 to 610 ms, p < 324 

0.001; 620 to 720 ms, p < 0.001; light red line and shading in Fig.4C). The same analysis time-325 

locked to the onset of the probe shows that negation is once again significantly decodable between 326 

230 and 930 ms after the probe (Fig.S3).  327 

Cumulatively, these results suggest that the brain encodes negation every time a “not” is 328 

presented and maintains this information up to 720 ms after adjective onset. Further, they show that 329 

the duration of negation maintenance is amplified by the presence of a second modifier, highlighting 330 

combinatoric effects 2,6,56. 331 

 332 

(3) Effect of negation on lexical-semantic representations of antonyms over time 333 

The temporal decoding analyses performed separately for adjectives and for negation demonstrates 334 

that the brain maintains the representation of the modifiers available throughout the presentation of 335 

the adjective. Here we ask how negation operates on the representation of the antonyms at the 336 

neural level, leveraging theoretical accounts of negation 11,12,42–44, behavioral results of Experiment 337 

1, and two complementary decoding approaches. We test four hypotheses (see Predictions in 338 

Fig.5A): (1) No effect of negation: negation does not change the representation of adjectives (i.e., 339 

“not low” = “low”). We included this hypothesis based on the two-step theory of negation, wherein 340 

the initial representation of negated adjectives would not be affected by negation 27. (2) Mitigation: 341 
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negation weakens the representation of adjectives (i.e., “not low” < “low”). (3) Inversion: negation 342 

inverts the representation of adjectives (i.e., “not low” = “high”). Hypotheses (3) and (4) are derived 343 

from previous linguistics and psycholinguistics accounts on comprehension of negated adjectives 344 
42–44. Finally, (4) Change: we evaluated the possibility that negation might change the representation 345 

of adjectives to another representation outside the semantic scale defined by the two antonyms (e.g., 346 

“not low” = e.g., “fair”).  347 

To adjudicate between these four hypotheses, we performed two sets of decoding analyses. 348 

Decoding approach (i): we computed the accuracy with which estimators trained on low vs. high 349 

antonyms in affirmative phrases (e.g., “really really bad” vs. “really really good”) generalize to the 350 

representation of low vs. high antonyms in negated phrases (e.g., “really not bad” vs. “really not 351 

good”) at each time sample time-locked to adjective onset (see Methods); decoding approach (ii): 352 

we trained estimators on low vs. high antonyms in affirmative and negated phrases together (in 90% 353 

of the trials) and computed the accuracy of the model in predicting the representation of low vs. 354 

high antonyms in affirmative and negated phrases separately (in the remaining 10% of the trials; 355 

see Methods). Decoding approach (ii) allows for direct comparison between AUC and probability 356 

estimates in affirmative and negated phrases. Expected probability estimates (i.e., the averaged 357 

class probabilities for low and high classes) as a result of decoding approach (i) and (ii) are depicted 358 

as light and dark, green and red bars under Decoding approach in Fig.5A.  359 
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Figure 5. Predictions, decoding approaches, and results of the effect of negation on the representation of 360 

adjectives. 361 

(A) We tested four possible effects of negation on the representation of adjectives: (1) No effect, (2) Mitigation, (3) 362 

Inversion, (4) Change (left column). Note that we depicted predictions of (3) Inversion on the extremes of the scale, 363 

but a combination of inversion and mitigation would predict the same outcomes. We performed two sets of decoding 364 
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analyses (right column): (i) We trained estimators on low (purple) vs. high (orange) antonyms in affirmative phrases 365 

and predicted model accuracy and probability estimates of low vs. high antonyms in negated phrases (light and dark 366 

red bars). (ii) We trained estimators on low vs. high antonyms in affirmative and negated phrases together and predicted 367 

model accuracy and probability estimates in affirmative (light and dark green bars) and negated phrases (light and dark 368 

red bars) separately. (B) Decoding accuracy (red line) over time of antonyms for negated phrases, as a result of decoding 369 

approach (i). Significant time windows are indicated by red areas. (C) Decoding accuracy of antonyms over time for 370 

affirmative (green line) and negated (red line) phrases, as a result of decoding approach (ii). Significant time windows 371 

for affirmative and negated phrases are indicated by green and red areas. The significant time window of the difference 372 

between affirmative and negated phrases is indicated by a black horizontal solid line. (D) Probability estimates for low 373 

(light red) and high (dark red) negated antonyms averaged across the significant time windows depicted in B. Bars 374 

represent the participants' mean ± SEM and dots represent individual participants. (E) Probability estimates for low 375 

(light green) and high (dark green) affirmative adjectives and for low (light red) and high (dark red) negated adjectives, 376 

averaged across the significant time window depicted as a black horizontal line in C. Chance level of probability 377 

estimates was computed by averaging probability estimates of the respective baseline (note that the baseline differs 378 

from 0.5 due to the different number of trials for each class in the training set of decoding approach (i)). Bars represent 379 

the participants' mean ± SEM and dots represent individual participants. For panels B and C: AUC: area under the 380 

receiver operating characteristic curve, chance = 0.5 (black horizontal dashed line); each line and shading represent 381 

participants' mean ± SEM. Panels B,C,D,E: the black vertical dashed line indicates the presentation onset of the 382 

adjective; green = affirmative phrases, red = negated phrases. 383 

 384 

Temporal decoding approach (i) reveals that the estimators trained on the representation of 385 

low vs. high antonyms in affirmative phrases significantly generalize to the representation of low 386 

vs. high antonyms in negated phrases, in four time windows between 130 and 550 ms from adjective 387 

onset (130 to 190 ms, p = 0.039; 200 to 270 ms: p = 0.003; 380 to 500 ms: p < 0.001; 500 to 550 388 

ms: p = 0.008; red areas in Fig.5B). Fig.5D depicts the probability estimates averaged over the 389 

significant time windows for low and high antonyms in negated phrases. These results only support 390 

predictions (1) No effect and (2) Mitigation, thus invalidating predictions (3) Inversion and (4) 391 

Change. Fig.S4 illustrates a different approach that similarly leads to the exclusion of prediction 392 

(3) Inversion. 393 

Temporal decoding approach (ii) shows significant above chance decoding accuracy for 394 

affirmative phrases between 130 and 280 ms (p < 0.001) and between 370 and 420 ms (p = 0.035) 395 

from adjective onset. Conversely, decoding accuracy for negated phrases is significantly above 396 

chance only between 380 and 450 ms after the onset of the adjective (p = 0.004). Strikingly, negated 397 

phrases are associated with significantly lower decoding accuracy than affirmative phrases in the 398 

time window between 130 and 190 ms from adjective onset (p = 0.040; black horizontal line in 399 

Fig.5C). Fig.5E represents the probability estimates averaged over this 130-190 ms significant time 400 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2023. ; https://doi.org/10.1101/2022.10.14.512299doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512299


17 
 

window for low and high antonyms, separately in affirmative and negated phrases, illustrating 401 

reduced probability estimates for negated compared to affirmative phrases.  402 

Overall, the generalization of representation from affirmative to negated phrases and the 403 

higher decoding accuracy (and probability estimates) for affirmative than negated phrases within 404 

the first 500 ms from adjective onset (i.e., within the time window of lexical-semantic processing 405 

shown in Fig.4A) provide direct evidence in support of prediction (2) Mitigation, wherein negation 406 

weakens the representation of adjectives. The alternative hypotheses did not survive the different 407 

decoding approaches.  408 

 409 

(4) Changes in beta power as a function of negation 410 

We distinguished among four possible mechanisms of how negation could operate on the 411 

representation of adjectives and demonstrated that negation does not invert or change the 412 

representation of adjectives but rather weakens the decodability of low vs. high antonyms, 413 

significantly for about 60 ms from adjective onset. The availability of negation upon the processing 414 

of the adjective (Fig.4C) and the reduced decoding accuracy for antonyms in negated phrases 415 

(Fig.5C) raise the question of whether negation operates through inhibitory mechanisms, as 416 

suggested by previous research employing action-related verbal material 35–37. We therefore 417 

performed time-frequency analyses, focusing on beta power (including low-beta: 12 to 20 Hz, and 418 

high-beta: 20 to 30 Hz, 57, see Methods), which has been previously associated with inhibitory 419 

control 58 (see Fig.S5 for comprehensive time-frequency results). We reasoned that, if negation 420 

operates through general-purpose inhibitory systems, we should observe higher beta power for 421 

negated than affirmative phrases in sensorimotor brain regions.  422 

Our results are consistent with this hypothesis, showing significantly higher low-beta power 423 

(from 229 to 350 ms from the onset of modifier1: p = 0.036; from 326 to 690 ms from adjective 424 

onset: p = 0.012; red line in Fig.6A) and high-beta power (from 98 to 271 ms from adjective onset: 425 

p = 0.044; yellow line in Fig.6A) for negated than affirmative phrases. Fig.S6 further shows low 426 

and high-beta power separately for negated and affirmative phrases, compared to phrases with no 427 

modifier.  428 

Our whole-brain source localization analysis shows significantly higher low-beta power for 429 

negated than affirmative phrases in the left precentral, postcentral, and paracentral gyri (p = 0.012; 430 

between 326 and 690 ms from adjective onset, red cluster in Fig.6C). For high-beta power, similar 431 

(albeit not significant) sensorimotor spatial patterns emerge (yellow cluster in Fig.6B). 432 
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Figure 6. Differences in beta power over time between negated and affirmative phrases. 433 

(A) Differences in low (12-20 Hz, red) and high (21-30 Hz, yellow) beta power over time between negated and 434 

affirmative phrases. Negated phrases show higher beta power compared to affirmative phrases throughout the 435 

presentation of the modifiers and for a sustained time window from adjective onset up to ~700 ms; significant time 436 

windows are indicated by red (low-beta) and yellow (high-beta) areas; black vertical dashed lines indicate the 437 

presentation onset of each word: modifier1, modifier2 and adjective; each line and shading represent participants' mean 438 

± SEM. (B) Differences (however not reaching statistical significance, α = 0.05) in high-beta power between negated 439 

and affirmative phrases (restricted between 97 and 271 ms from adjective onset, yellow cluster). (C) Significant 440 

differences in low-beta power between negated and affirmative phrases (restricted between 326 and 690 ms from 441 

adjective onset) in the left precentral, postcentral and paracentral gyrus (red cluster). Note that no significant spatial 442 

clusters were found in the right hemisphere. 443 

 444 

 445 

 446 

 447 

 448 

 449 
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Discussion  450 

We tracked changes over time in lexical-semantic representations of scalar adjectives, as a function 451 

of the intensifier “really” and the negation operator “not”. Neural correlates of negation have 452 

typically been investigated in the context of action verbs 29,35–37,40,41,59–63. Our study employs 453 

minimal linguistic contexts to characterize in detail how negation operates on abstract, non-action-454 

related lexical-semantic representations. We leveraged (1) psycholinguistic findings on adjectives 455 

that offer a framework wherein meaning is represented on a continuum 42,43, (2) time-resolved 456 

behavioral and neural data, and (3) multivariate analysis methods (decoding) which can 457 

discriminate complex lexical-semantic representations from distributed neuronal patterns (e.g., 62). 458 

The longer RTs and decreased accuracy for negated phases shown in Experiment 1 459 

(Fig.2A), in the replication experiment (Fig.S2A), and in Experiment 2, are consistent with data 460 

demonstrating that negation incurs increased processing costs 13–18,27,32. More significantly, mouse 461 

trajectories show that participants initially interpreted negated phrases as affirmative (e.g., “not 462 

good” is located on the “good” side of the scale, for ~130 ms, Fig.2C and Fig.S2C), indicating that 463 

initial representations of negated scalar adjectives are closer to the representations of the adjectives 464 

rather than that of their antonyms. Similarly, participants’ final interpretations of negated adjectives 465 

(e.g., “not good”, “really not good”) never overlapped with the final interpretations of the 466 

corresponding affirmative antonyms (e.g., “bad”, “really bad”, “really really bad”; Fig.2B and 467 

Fig.S2B) highlighting how negation never inverts the meaning of an adjective to that of its antonym, 468 

even when participants are making decisions on a binary semantic scale (9,37-40).  469 

Continuous mouse trajectories allowed us to quantify dynamic changes in participants’ 470 

interpretations. MEG provided a means to directly track neural representations over time. We first 471 

identified the temporal correlates of lexical-semantic processing separately for scalar adjectives 472 

and for the negation operator. The time window of adjective representation (~140-560 ms from 473 

adjective onset, Fig.4A) is consistent with previous studies investigating lexical-semantic 474 

processing in language comprehension (130–200 ms up to ~550 ms from word onset 64–68). Spatial 475 

decoding results corroborate temporal results, highlighting the involvement of the left-lateralized 476 

frontotemporal brain network in adjective processing (Fig.4B, 7,8,48–55). Our data further 477 

demonstrate that negation is processed in parallel to the processing of the adjective (up to ~700 ms; 478 

Fig.4C), not serially (see 69,70 for related patterns in the context of negation + auxiliary verb and 479 

adjective + noun). Finally, they show that the decodability of negation increases in phrases with 480 

two modifiers (e.g., “really not”, “not really”, Fig.4C, Fig.S3), highlighting compositional effects 481 
6. 482 
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We then evaluated the effects of the negation operator on adjective representation, to 483 

address the question of how negation operates on lexical-semantic representations of antonyms. We 484 

contrasted four hypotheses (Fig.5A): negation (1) does not change the representation of scalar 485 

adjectives (e.g., “not good” = “good”, No effect), (2) weakens the representation of scalar adjectives 486 

(e.g., “not good” < “good”, Mitigation), (3) inverts the representation of scalar adjectives (e.g., “not 487 

good” = “bad”, Inversion), or (4) changes the representation of scalar adjectives to another 488 

representation (e.g., “not good” = e.g., “unacceptable”, Change). First, we demonstrated that, within 489 

the time window of adjective encoding, the representation of affirmative adjectives generalizes to 490 

that of negated adjectives (Fig.5B and Fig.5D). This finding rules out predictions (3) Inversion and 491 

(4) Change. Moreover, these findings complement our behavioral data that show that negated 492 

adjectives are initially interpreted by participants as affirmative. Second, we showed that the 493 

representation of adjectives in affirmative and negated phrases is not identical but is weakened by 494 

negation (Fig.5C and Fig.5E). This result rules out prediction (1) No effect and supports prediction 495 

(2) Mitigation, wherein negation weakens the representation of adjectives. We observed such 496 

reduction in early lexical-semantic representations (i.e., from ~130 ms post adjective-onset), 497 

supporting previous research that reported effects of negation as soon as lexical-semantic 498 

representations of words are formed 12,29–31,71, and not exclusively at later processing stages (e.g., 499 

P600 72,73). 500 

Our behavioral and neural data jointly point to a mitigation rather than an inversion effect 501 

of negation: initial interpretations and neural representations of negated adjectives are similar to 502 

that of affirmative adjectives, but weakened; final interpretations do not overlap with neither 503 

affirmative extreme of the semantic scale. While previous fMRI studies on sentential negation have 504 

shown that negation reduces hemodynamic brain activations related to verb processing 40,41, the 505 

current study offers novel time-resolved behavioral and neural data on how negation selectively 506 

operates on abstract concepts. Previous research has highlighted that negation might behave 507 

differently depending on the pragmatics of discourse interpretation, e.g., when presented in 508 

isolation as compared to when presented in context (“not wrong” vs. “your theory is not wrong” 509 

9,10), or when used ironically (“they are not really good” said ironically to mean that they are 510 

“mediocre”, e.g., 11,71). Within this pragmatic framework, it has been suggested that the opposite 511 

meaning of a scalar adjective would be more simply conveyed by the affirmative counterpart than 512 

by negation 11,44,74; thus, to convey the opposite meaning of “bad”, it would be more appropriate to 513 

use “good” as opposed to “not bad”. Following this logic, negation would be purposefully used 514 

(and understood) to convey a different, mitigated meaning of the adjective (e.g., “not bad” = “less 515 

than bad”). Although we did not directly manipulate sentential or pragmatic contexts, our findings 516 
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provide behavioral and neural evidence that negation acts as a mitigator. Here we only tested 517 

adjective pairs that form contraries (which lie on a continuum, e.g., “bad” and “good”); thus 518 

inherently different patterns of results could emerge in the case of contradictories (which form a 519 

dichotomy, e.g., “dead” and “alive”, 44), where there is no continuum for mitigation to have an 520 

effect. 521 

Overall, evidence that negation weakens adjective representations invites the hypothesis 522 

that negation operates as a suppression mechanism, possibly through general-purpose inhibitory 523 

systems 36,37. To address this, we compared beta power modulations in affirmative and negated 524 

phrases (Fig.6). In addition to subserving motor processing, beta-power modulation (12-30 Hz) is 525 

associated with multiple aspects of language processing 35,75–78; for a review, see 57,79). We 526 

evaluated differences between negated and affirmative phrases separately in the low- and high-beta 527 

bands. We found greater power for negated than affirmative phrases in both bands, during the 528 

processing of the modifier and throughout the processing of the adjective up to ~700 ms, localized 529 

in left-lateralized sensorimotor areas. The timing and spatial correlates of beta-power in relation to 530 

negation align with studies that examined the effect of negation on (mental and motor) action 531 

representation 36. Strikingly, we demonstrated that negation recruits brain areas and 532 

neurophysiological mechanisms similar to that recruited by response inhibition - however in the 533 

absence of action-related language material. Within a framework that recognizes two interactive 534 

neural systems, i.e., a semantic representation and a semantic control system 53, negation would 535 

operate through the latter, modulating how activation propagates through the (ventral) language 536 

semantic network wherein meaning is represented. The precise connectivity that underpins 537 

mitigation of lexical-semantic representations remains to be investigated. 538 

Collectively, we demonstrated that, by characterizing subtle changes of linguistic meaning 539 

through negation, using time-resolved behavioral and neuroimaging methods and multivariate 540 

decoding, we can tease apart different possible representation outcomes of combinatorial 541 

operations, above and beyond the sum of the processing of individual word meanings.  542 

 543 

 544 

Materials and Methods 545 

Participants 546 

Experiment 1: continuous behavioral tracking. 101 participants (46 females; mean age = 29.6 years; 547 

range 18-67 years) completed an online mouse tracking experiment. Participants were recruited via 548 

Amazon Mechanical Turk and via the platform SONA (a platform for students’ recruitment). All 549 

participants were native English speakers with self-reported normal hearing, normal or corrected to 550 
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normal vision, and no neurological deficits. 97 participants were right-handed. Participants were 551 

paid or granted university credits for taking part in the study, which was performed online. All 552 

participants provided written informed consent, as approved by the local institutional review board 553 

(New York University’s Committee on Activities Involving Human Subjects). The data of 23 554 

participants were excluded from the data analysis due to (i) number of “incorrect” feedback (based 555 

on the warnings) > 30%, (ii) mean RTs > 2SD from the group mean, or (iii) response trajectory 556 

always ending within 1/4 from the center of the scale, regardless of condition (i.e., participants who 557 

did not pay attention to the instructions of the task). Thus, 78 participants were included in the 558 

analysis. The sample size was determined based on previous studies using a similar behavioral 559 

approach (~30 participants 15,45,80) and was increased to account for the exclusion rate reported for 560 

online crowdsourcing experiments 81,82. For participants in Experiment 1 (replication) see Fig.S2. 561 

 562 

Experiment 2: MEG. A new group of 28 participants (17 females; mean age = 28.7 years; range 19-563 

53 years) took part in the in-lab MEG experiment. All participants were native English speakers 564 

with self-reported normal hearing, normal or corrected to normal vision, and no neurological 565 

deficits. 24 participants were right-handed. They were paid or granted university credits for taking 566 

part in the study. All participants provided written informed consent, as approved by the local 567 

institutional review board (New York University’s Committee on Activities Involving Human 568 

Subjects). The data of 2 participants were excluded from the data analysis because their accuracy 569 

scores in the behavioral task was < 60%. Thus, 26 participants were included in the analysis. The 570 

sample size was determined based on previous studies investigating negation using EEG (17 to 33 571 

participants 26,35,37), investigating semantic representation using MEG (25 to 27 participants 7,8), or 572 

employing decoding methods with MEG data (17 to 20 participants 83,84). 573 

 574 

Stimuli, Design, and Procedure 575 

Experiment 1 (and replication): continuous mouse tracking.  576 

Stimuli and Design. The linguistic stimulus set comprises 108 unique adjective phrases (for the 577 

complete list, see Table S1). Adjectives were selected to be antonyms (i.e., low and high poles of 578 

the scale) in the following six cognitive or sensory dimensions: quality (“bad”, “good”), beauty 579 

(“ugly”, “beautiful”), mood (“sad”, “happy”), temperature (“cold”, “hot”), speed (“slow”, “fast”), 580 

and size (“small”, “big”). These antonyms are all contraries (i.e., adjectives that lie on a continuum 581 

44). Lexical characteristics of the antonyms were balanced according to the English Lexicon Project 582 
85; mean (SD) HAL log frequency of low adjectives: 10.69 (1.09), high adjectives: 11.51 (1.07), 583 

mean (SD) bigram frequency of low adjectives: 1087.10 (374), high adjectives: 1032 (477.2); mean 584 
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(SD) lexical decision RTs of low adjectives: 566 (37), high adjectives: 586 ms (70)). Adjectives 585 

were combined with zero (e.g., “### ###”), one (e.g., “really ###”), or two modifiers (e.g., “really 586 

not”). Modifiers were either the intensifier “really” or the negation “not” (see 33 for a similar choice 587 

of modifiers). A sequence of dashes was used to indicate the absence of a modifier, e.g., “really 588 

### good”. Each of the 12 adjectives was preceded by each of the nine possible combinations of 589 

modifiers: “### ###”, “### really”, “really ###”, “### not”, “not ###”, “really not”, “not really”, 590 

“really really” and “not not” (“not not” was included to achieve a full experimental design, even if 591 

it is not a frequent combination in natural language and its cognitive and linguistic representations 592 

are still under investigation86). Each dimension (e.g., quality) was presented in two blocks (one 593 

block for each scale orientation, e.g., low to high and high to low) for a total of 12 blocks. Each 594 

phrase was repeated three times within each block (note that “### really”/“really ###” were 595 

repeated an overall of three times, and so were “### not”/“not ###”). Thus, the overall experiment 596 

comprised 504 trials. The order of phrases was randomized within each block for each participant. 597 

The order of pairs of blocks was randomized across participants. 598 

 599 

Procedure. Behavioral trajectories provide time-resolved dynamic data that reflect changes in 600 

representation 15,45,46. The online experiment was developed using oTree, a Python-based 601 

framework for the development of controlled experiments on online platforms 87. Participants 602 

performed this study remotely, using their own monitor and mouse (touchpads were not allowed). 603 

They were instructed to read affirmative or negated adjective phrases (e.g., “really really good”, 604 

“really not bad”) and rate the overall meaning of each phrase on a scale, e.g., from “really really 605 

bad” to “really really good”. Participants were initially familiarized with the experiment through 606 

short videos and a short practice block (18 trials with feedback). They were instructed that the poles 607 

of the scale (e.g., “bad” and “good”) would be reversed in half of the trials and warned that (i) they 608 

could not cross the vertical borders of the response space, (ii) they had to maintain a constant 609 

velocity, by following an horizontal line moving vertically, and (iii) they could not rate the meaning 610 

of the phrase before the third word was presented. At the beginning of each trial, a response area of 611 

600 (horizontal) x 450 (vertical) pixels and a solid line at the top of the rectangle were presented 612 

(Fig.1A). Participants were informed about the scale (e.g., quality) and the direction of the scale 613 

(e.g., “bad” to “good” or “good” to “bad”, i.e., 1 to 10 or 10 to 1). Participants were instructed to 614 

click on the “start” button and move the cursor of the mouse to the portion of the scale that best 615 

represented the overall meaning of the phrase. The “start” button was placed in the center portion 616 

of the bottom of the response space (i.e., in a neutral position). Once “start” was clicked on, 617 

information about the scale and scale direction disappeared, leaving only the solid line on screen. 618 
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Phrases were presented at the top of the response space, from the time when participants clicked on 619 

“start”, one word at a time, each word for 250 ms (inter-word-interval: 50 ms). After each trial, 620 

participants were provided the “incorrect” feedback if the cursor’s movement violated the warnings 621 

provided during the familiarization phase, and an explanation was provided (e.g., “you crossed the 622 

vertical borders”). To keep participants engaged, we provided feedback also based on the final 623 

interpretation: “incorrect” if the response was in the half of the scale opposite to the adjective (for 624 

the conditions: “### ###”, “#### really”, “really ###” and “really really”), or in the same half of 625 

the scale of the adjective (for the conditions: “### not” or “not ###”), or in the outer 20% left and 626 

right portions of the scale (for the conditions: “really not”, “not really” and “not not”); feedback 627 

was “correct” otherwise. In case of an “incorrect” trial, the following trial was delayed for 4 628 

seconds. For each trial, we collected continuous mouse trajectories and RTs. The overall duration 629 

of the behavioral experiment was approximately 90 minutes. To verify that the feedback did not 630 

affect our results, we ran a replication study with 55 online participants where no feedback was 631 

provided based on the final interpretation (Fig.S2). 632 

 633 

Experiment 2: MEG.  634 

Stimuli and Design. The linguistic stimulus set comprised 72 unique adjective phrases (for the 635 

complete list, see Table S2). Similar to the Experiment 1, adjectives were selected for being 636 

antonyms (and contraries) in the following cognitive or sensory dimensions: quality (“bad”, 637 

“good”), temperature (“cool”, “warm”), loudness (“quiet”, “loud”), and brightness (“dark”, 638 

“bright”). Lexical characteristics of the antonyms were balanced according to the English Lexicon 639 

Project (85; mean (SD) HAL log frequency of “low” adjectives: 10.85 (1.03), “high” adjectives: 640 

10.55 (1.88); mean (SD) bigram frequency of “low” adjectives: 1196.5 (824.6), “high” adjectives: 641 

1077.5 (376.3); mean (SD) lexical decision RTs of “low” adjectives: 594 ms (39), “high” adjectives: 642 

594 (33)). Adjectives were combined with zero (e.g., “### ###”), one (e.g., “really ###”) or two 643 

modifiers (e.g., “really not”). Modifiers were either the intensifier “really” or the negation “not”. A 644 

sequence of dashes was used to indicate the absence of a modifier, e.g., “really ### good”. Each of 645 

the eight adjectives was preceded by each of the nine possible combinations of modifiers: “### 646 

###”, “#### really”, “really ###”, “### not”, “not ###”, “really not”, “not really”, “really really” 647 

and “not not” (“not not” was included to achieve a full experimental design, even if it is not a 648 

frequent combination in natural language). To avoid possible differences in neural representation 649 

of phrases with and without syntactic/semantic composition, the condition with no modifiers (“### 650 

###”) was exclusively employed as a baseline comparison in the time-frequency analysis and was 651 

excluded from all other analyses. Each dimension (e.g., quality) was presented in two blocks, one 652 
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block for each yes/no key orientation (8 blocks in total, see Procedure). Each phrase (e.g., “really 653 

really bad”) was repeated four times within one block. Thus, the overall experiment comprised 576 654 

trials. The order of phrases was randomized within each block for each participant. The order of 655 

blocks was randomized across participants within the first and second half of the experiment. The 656 

yes/no order was randomized across participants. 657 

 658 

Procedure. Participants were familiarized with the linguistic stimuli through a short practice block 659 

that mimicked the structure of the experimental blocks. They were instructed to read affirmative or 660 

negated adjective phrases (e.g., “really really good”, “really not bad”) and derive the overall 661 

meaning of each adjective phrase, on a scale from 0 to 8, e.g., from “really really bad” to “really 662 

really good”. Each trial started with a fixation cross (duration: 750 ms), followed by each phrase 663 

presented one word at a time, each word for 100 ms (inter-word-interval: 250 ms, Fig.1B). After 664 

each phrase, a fixation cross was presented for 1500 ms. A number (i.e., probe) was then presented, 665 

which did or did not correspond to the overall meaning of the adjective phrase on the scale. 666 

Participants were required to indicate whether the probe number correctly represented the meaning 667 

of the phrase on the scale (yes/no answer). The yes/no order was swapped halfway through the 668 

experiment. Responses had no time limit. If correct (+/- one step on the scale), a green fixation 669 

cross was presented; if incorrect, a red fixation cross was presented, and feedback was provided.  670 

While performing the experiment, participants lay supine in a magnetically shielded room while 671 

continuous MEG data were recorded through a 157-channel whole-head axial gradiometer system 672 

(Kanazawa Institute of Technology, Kanazawa, Japan). Sampling rate was 1000 Hz, and online 673 

high-pass filter of 1 Hz and low-pass filter of 200 Hz were applied. Five electromagnetic coils were 674 

attached to the forehead of the participants and their position was measured twice, before the first 675 

and after the last block. Instructions, visual stimuli and visual feedback were back-projected onto a 676 

Plexiglas screen using a Hitachi projector. Stimuli were presented using Psychtoolbox v3 (88; 677 

www.psychtoolbox.org), running under MATLAB R2019a (MathWorks) on an Apple iMac model 678 

10.12.6. Participants responded to the yes/no question with their index finger of their left and right 679 

hand, using a keypad. For each trial, we also collected accuracy and RTs. The overall duration of 680 

the MEG experiment was approximately 60 minutes. 681 

 682 

 683 

Data analysis 684 

Experiment 1 (and replication): RTs and mouse trajectories data. 685 
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The RTs and mouse trajectory analyses were limited to correct trials (group mean accuracy: 82%, 686 

SD: 13%), and RTs were limited within the range of participant median RTs ± 2 SD.  687 

To evaluate differences in RTs between antonyms (“small”, “cold”, “ugly”, “bad”, “sad” vs. “big”, 688 

“hot”, “beautiful”, “good”, “happy”, “fast”, i.e., low vs. high poles in each scalar dimension), and 689 

between negated and affirmative phrases (e.g., “really really good” vs. “really not good”), and their 690 

interactions, median RTs of each participant were entered into 2 (antonym: low vs. high) x 2 691 

(negation: negated vs. affirmative) repeated-measures ANOVA.  692 

To evaluate differences in the final interpretations between antonyms in each scale, between 693 

negated and affirmative phrases, and their interactions, mean and standard deviation of the final 694 

responses of each participant were entered into a 2 (antonym: low vs. high) x 2 (negation: negated 695 

vs. affirmative) repeated-measures ANOVA. Post-hoc tests were conducted for significant 696 

interactions (correction = Holm). Effect sizes were calculated using partial eta squared (ηp2). 697 

To compare mouse trajectories over time across participants, we resampled participants’ 698 

mouse trajectories at 100 Hz using linear interpolation, up to 2 seconds, to obtain 200 time points 699 

for each trial. Furthermore, trajectories were normalized between -1 and 1. For visualization 700 

purposes, we computed the median of trajectories across trials for each participant, dimension (e.g., 701 

quality), antonym (e.g., “bad”) and modifier (e.g., “really not”), and at each timepoint.  702 

Finally, to quantitatively evaluate how the interpretation of each phrase changed over time, 703 

for every participant we carried out regression analyses per each time point, for affirmative and 704 

negated phrases separately (for a similar approach, see 45). The dependent variable was the mouse 705 

coordinate along the scale (note that the scale which was swapped in half of the trials was swapped 706 

back for data analysis purposes), and the predictor was whether the adjective was a low or high 707 

antonym (e.g., “bad” vs. “good”). To identify the time windows where predictors were significantly 708 

different from 0 at the group level, we performed permutation cluster tests on beta values (10,000 709 

permutations) in the time window from the onset of the adjective up to 1.4 s from adjective onset 710 

(i.e., 2 s from the onset of word 1). 711 

 712 

Experiment 2: Accuracy and RTs data. 713 

To evaluate differences in accuracy between low and high antonyms (“bad”, “cool”, “quiet”, “dark” 714 

vs. “good”, “warm”, “loud”, “bright”), and between negated and affirmative phrases (e.g., “really 715 

really good” vs. “really not good”), and their interactions, mean accuracies in the yes/no task of 716 

each participant were entered into 2 (antonym: low vs. high) x 2 (negation: negated vs. affirmative) 717 

repeated-measures ANOVA. 718 
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The response time analysis was limited to correct trials. RTs outside the range of participant 719 

median RTs ± 2 SD were removed. To evaluate differences in RTs between low and high antonyms 720 

in each scale and between negated and affirmative phrases, and their interactions, median RTs of 721 

each participant in the yes/no task were entered into a 2 (antonym: low vs. high) x 2 (negation: 722 

negated vs. affirmative) repeated-measures ANOVA.  723 

 724 

Experiment 2: MEG data. 725 

Preprocessing. 726 

MEG data preprocessing was performed using MNE-python 89 and Eelbrain 727 

(10.5281/zenodo.438193). First, bad channels (i.e., below the 3rd or above the 97th percentile 728 

across all channels, for more than 20% of the entire recording) were interpolated. The MEG 729 

responses were denoised by applying least square projections of the reference channels and 730 

removing the corresponding components from the data 90. Denoised data were lowpass-filtered at 731 

20 Hz for the decoding analyses and at 40 Hz for the time-frequency analyses. FastICA was used 732 

to decompose the signal into independent components, to visually inspect and remove artifacts 733 

related to eye-blinks, heartbeat and external noise sources. MEG recordings were then epoched into 734 

epochs of -300 ms and 2550 ms around the onset of the first, second, or third word (or probe) for 735 

the decoding analyses, and into epochs of -800 and 3000 ms around the onset of the first word for 736 

the time-frequency analyses (and then cut between -300 and 2550 ms for group analyses). Note 737 

that, for visualization purposes, only 1700 ms from the onset of the first word (i.e., 1000 ms from 738 

adjective onset) were included in most figures (as no significant results were observed for control 739 

analyses run for later time windows). Finally, epochs with amplitudes greater than an absolute 740 

threshold of 3000 fT were removed and a baseline between -300 to 0 ms was applied to all epochs. 741 

 742 

Source reconstruction. 743 

Structural magnetic resonance images (MRIs) were collected for 10 out of 26 participants. For the 744 

remaining 16 participants, we manually scaled and co-registered the “fsaverage” brain to the 745 

participant’s head-digitalized shape and fiducials 89,91.  746 

For every participant, an ico-4 source space was computed, containing 2562 vertices per hemisphere 747 

and the forward solution was calculated using the Boundary Element Model (BEM). A noise 748 

covariance matrix was estimated from the 300 ms before the onset of the first word. The inverse 749 

operator was created and applied to the neuromagnetic data to estimate the source time courses at 750 

each vertex using dynamic statistical parametric mapping (dSPM: 92). The results were then 751 

morphed to the ico-5 “fsaverage” brain, yielding to time courses for 10242 vertices per hemisphere. 752 
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We then estimated the magnitude of the activity at each vertex (signal to noise ratio: 3, lambda2: 753 

0.11, with orientation perpendicular to the cortical surface), which was used in the decoding 754 

analyses (Spatial decoders).  755 

 756 

Decoding analyses. 757 

Decoding analyses were limited to correct trials and were performed with the MNE 89 and Scikit-758 

Learn packages 47. First, X (or the selected principal components) were set to have zero mean and 759 

unit variance (i.e., using a standard scaler). Second, we fitted a l2 linear estimator to a subset of the 760 

epochs (training set, Xtrain) and estimated y on a separate group of epochs (test set, ŷtest). We then 761 

computed the accuracy (AUC, see below) of the decoder, by comparing ŷtest with the ground truth 762 

y. For this analysis, we used the default values provided by the Scikit-Learn package and set the 763 

class-weight parameter to “balanced”.  764 

 765 

Temporal decoders. Temporal decoding analyses were performed in sensor-space. Before fitting 766 

the estimators, linear dimensionality reduction (principal component analysis, PCA) was performed 767 

on the channel amplitudes to project them to a lower dimensional space (i.e., to new virtual channels 768 

that explained more than 99% of the feature variance). We then fitted the linear estimator on each 769 

participant separately, across all selected components, at each time-point separately. Time was 770 

subsampled to 100 Hz. We then employed a 5-fold stratified cross-validation (or 10-fold, depending 771 

on the number of trials per class), that fitted the linear estimator to 80% (or 90%) of the epochs and 772 

generated predictions on 20% (or 10%) of the epochs, while keeping the distributions of the training 773 

and test set maximally homogeneous. This decoding approach was used for analyses of Fig.3B, 774 

Fig.3C, Fig.4A, Fig.4C and decoding approach (ii) in Fig.5C. To investigate whether the 775 

representation of antonyms was comparable between affirmative and negated phrases, in a different 776 

set of analyses (i.e., decoding approach (i), Fig.5B) we fitted the linear estimator to all epochs 777 

corresponding to affirmative phrases and generated predictions on all epochs corresponding to 778 

negated phrases. In both decoding approaches, accuracy and probability estimates for each class 779 

were then computed. Decoding accuracy is summarized with an empirical area under the curve 780 

(rocAUC, 0 to 1, chance at 0.5).  781 

At the group level, we extracted the clusters of time where AUC across participants was 782 

significantly higher than chance using a one-sample permutation cluster test, as implemented in 783 

MNE-python (10000 permutations 93). We performed separate permutation cluster tests for the 784 

following time windows: -700 to -350 ms from adjective onset (i.e., word 1), -350 to 0 ms from 785 

adjective onset (i.e., word 2), 0 to 500 ms from adjective onset (i.e., time window for lexical-786 
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semantic processes 65,66) and 500 to 1000 ms from adjective onset (i.e., to account for potential later 787 

processes).  788 

 789 

Expected outcome for the effect of negation on the representation of antonyms. Temporal decoding 790 

approach (i) and (ii) described above allow us to make specific predictions about the effect of 791 

negation on the representation of antonyms (Fig.5A).  792 

Approach (i) train set: affirmative phrases; test set: negated phrases. For our results to 793 

support predictions (1) No effect or (2) Mitigation, this decoding approach should show probability 794 

estimates of high and low adjectives significantly above the computed chance level and in the 795 

direction of the respective classes, indicating that the initial representation of adjectives in negated 796 

phrases is similar to that in affirmative phrases (left column, first and second row under decoding 797 

approach in Fig.5A). Conversely, for our results to support prediction (3) Inversion, this decoding 798 

approach should show probability estimates of high and low adjectives significantly above the 799 

computed chance level but in the direction of the opposite classes (i.e., swapped), as adjective 800 

representations would be systematically inverted in negated phrases (left column, third row under 801 

decoding approach in Fig.5A). Finally, we should observe at chance probability estimates in the 802 

case of (4) Change, where adjective representations in negated phrases are not predictable from the 803 

corresponding representations in affirmative phrases (left column, fourth row under decoding 804 

approach in Fig.5A).  805 

Approach (ii) train set: affirmative and negated phrases together; test set: affirmative and 806 

negated phrases separately. This decoding analysis allows us to disentangle predictions (1) No effect 807 

from (2) Mitigation. For the results of this analysis to support prediction (1) No effect, we should 808 

observe quantitatively comparable probability estimates in affirmative and negated phrases, 809 

suggesting that negation does not change the representation of adjectives (right column, first row 810 

under decoding approach in Fig.5A). Conversely, in support of prediction (2) Mitigation, we 811 

should observe significantly reduced probability estimates for negated relative to affirmative 812 

phrases, suggesting less robust differences between low and high antonyms in negated phrases 813 

(right column, second row under decoding approach in Fig.5A). The outcome of predictions (3) 814 

Inversion and (4) Change would be at chance probability estimates (as the model is trained on 815 

different representations within the same class; right column, third and fourth row under decoding 816 

approach in Fig.5A).  817 

Spatial decoders. Spatial decoding analyses were performed in source-space. We fitted each 818 

estimator on each participant separately, across 50 to 650 ms time samples relative to the onset of 819 

the adjective (to include the three significant time windows that emerge from the temporal decoding 820 
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analysis in Fig.3B), at each brain source separately, after morphing individual participant’s source 821 

estimates to the ico-5 “fsaverage” common reference space. We employed a 5-fold stratified cross-822 

validation, which fitted the linear estimator to 80% of the epochs and generated predictions on 20% 823 

of the epochs, while keeping the distributions of the training and test set maximally homogeneous. 824 

Decoding accuracy is summarized with an empirical area under the curve (AUC, 0 to 1, chance at 825 

0.5). At the group level, we extracted the brain areas where the AUC across participants was 826 

significantly higher than chance, using a one-sample permutation cluster test as implemented in 827 

MNE-python (10000 permutations; adjacency computed from the “fsaverage” brain 93).  828 

 829 

Time-frequency analysis. 830 

We extracted time-frequency power of the epochs (-800 to 3000 ms from the onset of word 1) using 831 

Morlet wavelets of 3 cycles per frequency, in frequencies between 3.9 and 37.2 Hz, logarithmically 832 

spaced (19 frequencies overall). Power estimates where then cut between -300 and 2550 ms from 833 

onset of word 1 and baseline corrected using a window of -300 to -100 ms from the onset of word 834 

1, by subtracting the mean of baseline values and dividing by the mean of baseline values (mode = 835 

‘percent’). Power in the low-beta frequency range (12 to 20 Hz) and in the high-beta frequency 836 

range (21 to 30 Hz 57,79) was averaged to obtain a time course of power in low and high-beta 837 

rhythms. We then subtracted the beta power of affirmative phrases from that of negated phrases. At 838 

the group level, we extracted the clusters of time where this difference in power across participants 839 

was significantly greater than 0, using a one-sample permutation cluster test as implemented in 840 

MNE-python (10000 permutations 93). We performed separate permutation cluster tests in the same 841 

time windows used for the decoding analysis: -700 to -350 ms, -350 to 0 ms, 0 to 500 ms, and 500 842 

to 1000 ms from the onset of the adjective (note that no significant differences were observed in 843 

analyses ran for time windows after 1000 ms). We then computed the induced power in source 844 

space (method: dSPM and morphing individual participant’s source estimates to the ico-5 845 

“fsaverage” reference space) for the significant clusters of time in the low- and high-beta range 846 

separately and averaged over time. At the group level, we extracted the brain areas where the power 847 

difference across participants was significantly greater than 0, using a one-sample permutation 848 

cluster test as implemented in MNE-python (10000 permutations; adjacency computed from the 849 

“fsaverage” brain 93). 850 

 851 

 852 

 853 

 854 
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Supplementary Materials 1057 

Tables 1058 

 1059 

List of linguistic stimuli employed in Experiment 1 (behavior) 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### really 
### really 
### really 
### really 
### really 
### really 
### really 
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### really 
### really 
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really ### 
really ### 
really ### 
really ### 
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cold 
hot 
ugly 
beautiful 
bad 
good 
sad 
happy 
slow 
fast 
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big 
cold 
hot 
ugly 
beautiful 
bad 
good 
sad 
happy 
slow 
fast 
small 
big 
cold 
hot 
ugly 
beautiful 
bad 
good 
sad 
happy 
slow 
fast 

really really 
really really 
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really really 
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really really 
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### not 
### not 
### not 
### not 
### not 
### not 
### not 
### not 
### not 
### not 
### not 
### not 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
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cold 
hot 
ugly 
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bad 
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cold 
hot 
ugly 
beautiful 
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sad 
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slow 
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cold 
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big 
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fast 

 1060 

Table S1. Comprehensive list of the 108 stimuli used in the behavioral experiment, color coded for 1061 

each experimental condition; purple: low adjectives, orange: high adjectives; green: affirmative 1062 

phrases, red: negated phrases.  1063 
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List of linguistic stimuli employed in Experiment 2 (MEG) 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### ### 
### really 
### really 
### really 
### really 
### really 
### really 
### really 
### really 
really ### 
really ### 
really ### 
really ### 
really ### 
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really ### 
really ### 

quiet 
loud 
cool 
warm 
dark 
bright 
bad 
good 
quiet 
loud 
cool 
warm 
dark 
bright 
bad 
good 
quiet 
loud 
cool 
warm 
dark 
bright 
bad 
good 

really really 
really really 
really really 
really really 
really really 
really really 
really really 
really really 
### not 
### not 
### not 
### not 
### not 
### not 
### not 
### not 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
not ### 
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loud 
cool 
warm 
dark 
bright 
bad 
good 
quiet 
loud 
cool 
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dark 
bright 
bad 
good 
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loud 
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bright 
bad 
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not not 
not not 
not not 
not not 
not not 
not not 
not not 
not not 
really not 
really not 
really not 
really not 
really not 
really not 
really not 
really not 
not really 
not really 
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loud 
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warm 
dark 
bright 
bad 
good 
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loud 
cool 
warm 
dark 
bright 
bad 
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loud 
cool 
warm 
dark 
bright 
bad 
good 

 1064 

Table S2. Comprehensive list of the 72 stimuli used in the MEG experiment, color coded for each 1065 

experimental condition; purple: low adjectives, orange: high adjectives; green: affirmative phrases, 1066 

red: negated phrases. Note that the condition with no modifiers (“### ###”) was only employed as 1067 

a baseline condition in the time-frequency analysis.  1068 
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Figures 1069 

 1070 

 1071 
 1072 

Fig. S1. Trajectories for each scalar dimension. 1073 

Behavioral trajectories for low (purples) and high (oranges) antonyms over time, for each scalar 1074 

dimension (i.e., quality, beauty, mood, temperature, speed and size), for each modifier (shades of 1075 

orange and purple), and for affirmative and negated phrases. Black vertical dashed lines indicate 1076 

the presentation onset of each word: modifier1, modifier2 and adjective.  1077 
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 1078 

 1079 

Fig. S2. Replication of Experiment 1, without feedback on interpretation. 1080 

A new group of 60 participants (37 females; mean age = 19.26 years; range 18-23 years) completed 1081 

the online mouse tracking experiment. Participants were recruited via the platform SONA (a 1082 

platform for students’ recruitment). All participants were native English speakers with self-reported 1083 

normal hearing and no neurological deficits. 59 participants were right-handed. Participants were 1084 

granted university credits for taking part in the study, which was performed online. All participants 1085 

provided written informed consent, as approved by the local institutional review board (New York 1086 

University’s Committee on Activities Involving Human Subjects). The data of 5 participants were 1087 

excluded from the data analysis due to (i) number of “incorrect” feedback based on the warnings > 1088 

30%, (ii) mean RTs > 2SD from the group mean, or (iii) response trajectory always ending within 1089 

1/4 from the center of the scale, regardless of condition (i.e., participants who did not pay attention 1090 

to the instructions of the task). Thus, 55 participants were included in the analysis. The experimental 1091 
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procedure was the same as that of Experiment 1, except that no feedback was provided to 1092 

participants based on the final interpretation, but only if the cursor’s movement violated the 1093 

warnings provided during the familiarization phase (e.g., “you crossed the vertical borders”, see 1094 

Procedure of Experiment 1). We performed the same data analyses performed for Experiment 1: 1095 

(A) Reaction times: To evaluate the specific effect of antonyms and of negation, we performed a 2 1096 

(antonym: low vs high) x 2 (negation: negated vs affirmative) repeated-measures ANOVA. The 1097 

results reveal a significant main effect of antonyms (F(1,54) = 36.90, p < 0.001, ηp2 = 0.40) and a 1098 

significant main effect of negation (F(1,54) = 73.04, p < 0.001, ηp2 = 0.57). Moreover, a significant 1099 

crossover interaction between antonyms and negation was found (F(1,54) = 16.40, p < 0.001, ηp2 = 1100 

0.23). These results replicate Experiment 1, showing that participants were faster for high adjectives 1101 

(e.g., “good”) than for low adjectives (e.g., “bad”) and for affirmative phrases (e.g., “really really 1102 

good”) than for negated phrases (e.g., “really not good”). A further analysis including the number 1103 

of modifiers as factor (i.e., complexity) indicates that participants were faster for phrases with two 1104 

modifiers, e.g., “not really”, than phrases with one modifier, e.g., “not ###” (F(1,54) = 28.87, p < 1105 

0.001, ηp2 = 0.35, especially in affirmative phrases: complexity by negation interaction F(1,54) = 1106 

6.26, p = 0.015, ηp2 = 0.10), again replicating results of Experiment 1. Bars represent the 1107 

participants' mean ± SEM and dots represent individual participants.  1108 

(B) Continuous mouse trajectories: To investigate how negation changes the interpretation of scalar 1109 

adjectives, we performed a 2 (antonym: low vs high) x 2 (negation: negated vs affirmative) 1110 

repeated-measures ANOVA for participants’ final interpretations (filled circles, purple = low, 1111 

orange = high, averaged across dimensions and participants), which revealed a significant main 1112 

effect of antonyms (F(1,54) = 166.40, p < 0.001, ηp2 = 0.47), a significant main effect of negation 1113 

(F(1,54) = 48.62, p < 0.001, ηp2 = 0.47), and a significant interaction between antonyms and 1114 

negation (F(1,54) = 210.13, p < 0.001, ηp2 = 0.80). Post-hoc tests show that the final interpretation 1115 

of negated phrases was located at a more central portion of the semantic scale than that of 1116 

affirmative phrases (affirmative low < negated high, and affirmative high > negated low, pholm < 1117 

0.001), indicating that negation never inverts the interpretation of adjectives to that of their 1118 

antonyms. Results also show that the final interpretations of negated phrases was significantly more 1119 

variable (measured as standard deviations) than that of affirmative phrases (F(1,54) = 15.43, p < 1120 

0.001, ηp2 = 0.22). These results replicate Experiment 1. (C) and (D). To quantify the degree of 1121 

deviation towards each side of the scale, we performed regression analyses with antonyms as the 1122 

predictor and mouse trajectories as the dependent variable. Trials with “not not” were not included 1123 

in this analysis as, in this experiment, the trajectories pattern was different compared to the other 1124 

conditions with negation. Our results indicate that, while mouse trajectories of affirmative phrases 1125 
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branched towards either side of the scale and remained on that side until the final interpretation 1126 

(lines in the left, gray, zoomed-in panel in C), the trajectories of negated phrases first deviated 1127 

towards the side of the adjective and then towards the side of the antonym (lines in the right, gray, 1128 

zoomed-in panel in C). The results of the regression analyses show that (1) in affirmative phrases, 1129 

betas are positive (i.e., mouse trajectories moving towards the adjective) starting from 400 ms from 1130 

the adjective onset (p < 0.001, green line in D); and that (2) in negated phrases, betas are positive 1131 

(i.e., mouse trajectories moving towards the adjective) between 400 and 650 ms from the adjective 1132 

onset (p = 0.02), and only became negative (i.e., mouse trajectories moving towards the antonym) 1133 

from 910 ms from the adjective onset (p = 0.003, i.e., red line in D). Thicker lines indicate 1134 

significant time windows. These results again replicate Experiment 1. For panels C and D: black 1135 

vertical dashed lines indicate the presentation onset of each word: modifier 1, modifier 2 and 1136 

adjective; each line and shading represent participants' mean ± SEM; *** p < 0.001; ** p < 0.01; * 1137 

p < 0.05.  1138 
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Fig. S3. Temporal decoding of negation as a function of number of modifiers (i.e., complexity), 1141 

time-locked to the onset of the probe. 1142 

Decoding accuracy of negation over time, as a function of the number of modifiers (1 modifier: 1143 

dark red line and shading; 2 modifiers: light red line and shading). Significant time windows are 1144 

indicated by dark red (1 modifier) and light red (2 modifiers) areas. These results show that we 1145 

could significantly decode the difference between affirmative and negated phrases between 230 and 1146 

930 ms after the onset of the probe, especially when the phrase included two modifiers (1 modifier: 1147 

between 790 and 930 ms: p < 0.001; 2 modifiers: between 230 and 840 ms: p < 0.001). This suggests 1148 

that the representation of modifiers is reactivated at the stage when participants have to perform the 1149 

yes/no task. AUC = area under the receiver operating characteristic curve, chance = 0.5 (black 1150 

dashed horizontal line); the black vertical dashed line indicates the presentation onset of the probe; 1151 

aff = affirmative, neg = negated; each line and shading represent participants mean ± SEM. 1152 
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Fig. S4. Temporal decoding of composed meaning. 1156 

We trained estimators on phrases where the predicted composed meaning was “low” vs. “high” in 1157 

90% of the trials and computed the accuracy of the model in predicting the representation of the 1158 

meaning “low” vs. “high” in the remaining 10% of the trials. For instance, for the quality dimension, 1159 

classes are: [0: bad] “### really bad”, “really ### bad”, “really really bad”, “### not good”, “not 1160 

### good”, “not not good”, “really not good”, “not really good”; and [1: good] “### really good”, 1161 

“really ### good”, “really really good”, “### not bad”, “not ### bad”, “not not bad”, “really not 1162 

bad”, “not really bad”. The composed meaning was derived from the behavioral results of 1163 

Experiment 1. (A) Temporal decoding analyses time-locked to the onset of the adjective do not 1164 

reveal any significant temporal cluster, suggesting that negation does not invert the representation 1165 

of the adjective to that of its antonym (e.g., “bad” to “good”), as would be predicted by prediction 1166 

(3) Inversion. (B) Temporal decoding analyses time-locked to the onset of the probe do not reveal 1167 

any significant temporal cluster, suggesting that negation does not invert the representation of the 1168 

adjective to that of its antonym (e.g., “bad” to “good”) after the presentation of the probe number. 1169 

For all panels: AUC = area under the receiver operating characteristic curve, chance = 0.5 (black 1170 

horizontal dashed line); black vertical dashed lines indicate the presentation onset of the adjective 1171 

in A and the probe in B; each line and shading represent participants' mean ± SEM.  1172 
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Fig. S5. Differences between negated and affirmative phrases across time and frequencies. 1175 

Time-frequency spectrum of the differences between negated and affirmative phrases averaged 1176 

across all sensors and all participants. Frequencies are between 3.9 and 37.2 Hz, logarithmically 1177 

spaced. Black vertical dashed lines indicate the presentation onset of each word: modifier1, 1178 

modifier2 and adjective; colors indicate % differences in change relative to a baseline of -300 to -1179 

100 ms from the onset of word 1 (modifier1).  1180 
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Fig. S6. Low- and high-beta power for negated and affirmative phrases across time.  1183 

The mean beta power for the no modifier condition was subtracted from the mean beta power of 1184 

affirmative and negated phrases, separately for low-beta (12-20 Hz, (A)) and high-beta (21-30 Hz, 1185 

(B)). The horizontal solid black line represents the no modifier condition (i.e., ### ###) after 1186 

subtraction (thus = 0), and the green and red lines represent beta power over time for affirmative 1187 

and negated phrases, respectively. Relative change (%) was obtained by subtracting the mean of 1188 

baseline values (-300 to -100 ms from the onset of word1) and dividing by the mean of baseline 1189 

values. Black vertical dashed lines indicate the presentation onset of each word: modifier1, 1190 

modifier2 and adjective; each line and shading represent participants' mean ± SEM. 1191 
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